IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52060-8.html
   My bibliography  Save this article

Automated design of multi-target ligands by generative deep learning

Author

Listed:
  • Laura Isigkeit

    (Institute of Pharmaceutical Chemistry)

  • Tim Hörmann

    (Department of Pharmacy)

  • Espen Schallmayer

    (Institute of Pharmaceutical Chemistry)

  • Katharina Scholz

    (Department of Pharmacy)

  • Felix F. Lillich

    (Institute of Pharmaceutical Chemistry
    Fraunhofer Institute for Translational Medicine and Pharmacology ITMP)

  • Johanna H. M. Ehrler

    (Institute of Pharmaceutical Chemistry)

  • Benedikt Hufnagel

    (Institute of Pharmaceutical Chemistry)

  • Jasmin Büchner

    (Institute of Pharmaceutical Chemistry)

  • Julian A. Marschner

    (Department of Pharmacy)

  • Jörg Pabel

    (Department of Pharmacy)

  • Ewgenij Proschak

    (Institute of Pharmaceutical Chemistry
    Fraunhofer Institute for Translational Medicine and Pharmacology ITMP)

  • Daniel Merk

    (Institute of Pharmaceutical Chemistry
    Department of Pharmacy)

Abstract

Generative deep learning models enable data-driven de novo design of molecules with tailored features. Chemical language models (CLM) trained on string representations of molecules such as SMILES have been successfully employed to design new chemical entities with experimentally confirmed activity on intended targets. Here, we probe the application of CLM to generate multi-target ligands for designed polypharmacology. We capitalize on the ability of CLM to learn from small fine-tuning sets of molecules and successfully bias the model towards designing drug-like molecules with similarity to known ligands of target pairs of interest. Designs obtained from CLM after pooled fine-tuning are predicted active on both proteins of interest and comprise pharmacophore elements of ligands for both targets in one molecule. Synthesis and testing of twelve computationally favored CLM designs for six target pairs reveals modulation of at least one intended protein by all selected designs with up to double-digit nanomolar potency and confirms seven compounds as designed dual ligands. These results corroborate CLM for multi-target de novo design as source of innovation in drug discovery.

Suggested Citation

  • Laura Isigkeit & Tim Hörmann & Espen Schallmayer & Katharina Scholz & Felix F. Lillich & Johanna H. M. Ehrler & Benedikt Hufnagel & Jasmin Büchner & Julian A. Marschner & Jörg Pabel & Ewgenij Proschak, 2024. "Automated design of multi-target ligands by generative deep learning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52060-8
    DOI: 10.1038/s41467-024-52060-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52060-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52060-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Moret & Irene Pachon Angona & Leandro Cotos & Shen Yan & Kenneth Atz & Cyrill Brunner & Martin Baumgartner & Francesca Grisoni & Gisbert Schneider, 2023. "Leveraging molecular structure and bioactivity with chemical language models for de novo drug design," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Atz & Leandro Cotos & Clemens Isert & Maria Håkansson & Dorota Focht & Mattis Hilleke & David F. Nippa & Michael Iff & Jann Ledergerber & Carl C. G. Schiebroek & Valentina Romeo & Jan A. Hiss , 2024. "Prospective de novo drug design with deep interactome learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Alessio Fallani & Leonardo Medrano Sandonas & Alexandre Tkatchenko, 2024. "Inverse mapping of quantum properties to structures for chemical space of small organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52060-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.