IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50317-w.html
   My bibliography  Save this article

Self-supervised learning for characterising histomorphological diversity and spatial RNA expression prediction across 23 human tissue types

Author

Listed:
  • Francesco Cisternino

    (Human Technopole)

  • Sara Ometto

    (Human Technopole)

  • Soumick Chatterjee

    (Human Technopole)

  • Edoardo Giacopuzzi

    (Human Technopole)

  • Adam P. Levine

    (University College London)

  • Craig A. Glastonbury

    (Human Technopole)

Abstract

As vast histological archives are digitised, there is a pressing need to be able to associate specific tissue substructures and incident pathology to disease outcomes without arduous annotation. Here, we learn self-supervised representations using a Vision Transformer, trained on 1.7 M histology images across 23 healthy tissues in 838 donors from the Genotype Tissue Expression consortium (GTEx). Using these representations, we can automatically segment tissues into their constituent tissue substructures and pathology proportions across thousands of whole slide images, outperforming other self-supervised methods (43% increase in silhouette score). Additionally, we can detect and quantify histological pathologies present, such as arterial calcification (AUROC = 0.93) and identify missing calcification diagnoses. Finally, to link gene expression to tissue morphology, we introduce RNAPath, a set of models trained on 23 tissue types that can predict and spatially localise individual RNA expression levels directly from H&E histology (mean genes significantly regressed = 5156, FDR 1%). We validate RNAPath spatial predictions with matched ground truth immunohistochemistry for several well characterised control genes, recapitulating their known spatial specificity. Together, these results demonstrate how self-supervised machine learning when applied to vast histological archives allows researchers to answer questions about tissue pathology, its spatial organisation and the interplay between morphological tissue variability and gene expression.

Suggested Citation

  • Francesco Cisternino & Sara Ometto & Soumick Chatterjee & Edoardo Giacopuzzi & Adam P. Levine & Craig A. Glastonbury, 2024. "Self-supervised learning for characterising histomorphological diversity and spatial RNA expression prediction across 23 human tissue types," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50317-w
    DOI: 10.1038/s41467-024-50317-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50317-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50317-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50317-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.