IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37991-y.html
   My bibliography  Save this article

Privacy risks of whole-slide image sharing in digital pathology

Author

Listed:
  • Petr Holub

    (BBMRI-ERIC
    Masaryk University)

  • Heimo Müller

    (Medical University of Graz)

  • Tomáš Bíl

    (Masaryk University)

  • Luca Pireddu

    (CRS4)

  • Markus Plass

    (Medical University of Graz)

  • Fabian Prasser

    (Berlin Institute of Health @ Charité – Universitätsmedizin Berlin)

  • Irene Schlünder

    (TMF eV)

  • Kurt Zatloukal

    (Medical University of Graz)

  • Rudolf Nenutil

    (BBMRI.cz & Masaryk Memorial Cancer Institute)

  • Tomáš Brázdil

    (Masaryk University)

Abstract

Access to large volumes of so-called whole-slide images—high-resolution scans of complete pathological slides—has become a cornerstone of the development of novel artificial intelligence methods in pathology for diagnostic use, education/training of pathologists, and research. Nevertheless, a methodology based on risk analysis for evaluating the privacy risks associated with sharing such imaging data and applying the principle “as open as possible and as closed as necessary” is still lacking. In this article, we develop a model for privacy risk analysis for whole-slide images which focuses primarily on identity disclosure attacks, as these are the most important from a regulatory perspective. We introduce a taxonomy of whole-slide images with respect to privacy risks and mathematical model for risk assessment and design . Based on this risk assessment model and the taxonomy, we conduct a series of experiments to demonstrate the risks using real-world imaging data. Finally, we develop guidelines for risk assessment and recommendations for low-risk sharing of whole-slide image data.

Suggested Citation

  • Petr Holub & Heimo Müller & Tomáš Bíl & Luca Pireddu & Markus Plass & Fabian Prasser & Irene Schlünder & Kurt Zatloukal & Rudolf Nenutil & Tomáš Brázdil, 2023. "Privacy risks of whole-slide image sharing in digital pathology," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37991-y
    DOI: 10.1038/s41467-023-37991-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37991-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37991-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benoît Schmauch & Alberto Romagnoni & Elodie Pronier & Charlie Saillard & Pascale Maillé & Julien Calderaro & Aurélie Kamoun & Meriem Sefta & Sylvain Toldo & Mikhail Zaslavskiy & Thomas Clozel & Matah, 2020. "A deep learning model to predict RNA-Seq expression of tumours from whole slide images," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kusta, Olsi & Bearman, Margaret & Gorur, Radhika & Risør, Torsten & Brodersen, John Brandt & Hoeyer, Klaus, 2024. "Speed, accuracy, and efficiency: The promises and practices of digitization in pathology," Social Science & Medicine, Elsevier, vol. 345(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao Feng & Jiangfeng Shi & Liebin Huang & Zhiqi Yang & Shi-Ting Feng & Jianpeng Li & Qinxian Chen & Huimin Xue & Xiangguang Chen & Cuixia Wan & Qinghui Hu & Enming Cui & Yehang Chen & Wansheng Long, 2024. "Robustly federated learning model for identifying high-risk patients with postoperative gastric cancer recurrence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Omar S. M. El Nahhas & Chiara M. L. Loeffler & Zunamys I. Carrero & Marko Treeck & Fiona R. Kolbinger & Katherine J. Hewitt & Hannah S. Muti & Mara Graziani & Qinghe Zeng & Julien Calderaro & Nadina O, 2024. "Regression-based Deep-Learning predicts molecular biomarkers from pathology slides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Duy Pham & Xiao Tan & Brad Balderson & Jun Xu & Laura F. Grice & Sohye Yoon & Emily F. Willis & Minh Tran & Pui Yeng Lam & Arti Raghubar & Priyakshi Kalita-de Croft & Sunil Lakhani & Jana Vukovic & Ma, 2023. "Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    4. Weiwei Wang & Yuanshen Zhao & Lianghong Teng & Jing Yan & Yang Guo & Yuning Qiu & Yuchen Ji & Bin Yu & Dongling Pei & Wenchao Duan & Minkai Wang & Li Wang & Jingxian Duan & Qiuchang Sun & Shengnan Wan, 2023. "Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yuanning Zheng & Francisco Carrillo-Perez & Marija Pizurica & Dieter Henrik Heiland & Olivier Gevaert, 2023. "Spatial cellular architecture predicts prognosis in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37991-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.