Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-41195-9
Download full text from publisher
References listed on IDEAS
- Benoît Schmauch & Alberto Romagnoni & Elodie Pronier & Charlie Saillard & Pascale Maillé & Julien Calderaro & Aurélie Kamoun & Meriem Sefta & Sylvain Toldo & Mikhail Zaslavskiy & Thomas Clozel & Matah, 2020. "A deep learning model to predict RNA-Seq expression of tumours from whole slide images," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
- Ming Y. Lu & Tiffany Y. Chen & Drew F. K. Williamson & Melissa Zhao & Maha Shady & Jana Lipkova & Faisal Mahmood, 2021. "AI-based pathology predicts origins for cancers of unknown primary," Nature, Nature, vol. 594(7861), pages 106-110, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bao Feng & Jiangfeng Shi & Liebin Huang & Zhiqi Yang & Shi-Ting Feng & Jianpeng Li & Qinxian Chen & Huimin Xue & Xiangguang Chen & Cuixia Wan & Qinghui Hu & Enming Cui & Yehang Chen & Wansheng Long, 2024. "Robustly federated learning model for identifying high-risk patients with postoperative gastric cancer recurrence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Alicia-Marie Conway & Simon P. Pearce & Alexandra Clipson & Steven M. Hill & Francesca Chemi & Dan Slane-Tan & Saba Ferdous & A. S. Md Mukarram Hossain & Katarzyna Kamieniecka & Daniel J. White & Clai, 2024. "A cfDNA methylation-based tissue-of-origin classifier for cancers of unknown primary," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Omar S. M. El Nahhas & Chiara M. L. Loeffler & Zunamys I. Carrero & Marko Treeck & Fiona R. Kolbinger & Katherine J. Hewitt & Hannah S. Muti & Mara Graziani & Qinghe Zeng & Julien Calderaro & Nadina O, 2024. "Regression-based Deep-Learning predicts molecular biomarkers from pathology slides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Luan Nguyen & Arne Hoeck & Edwin Cuppen, 2022. "Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Duy Pham & Xiao Tan & Brad Balderson & Jun Xu & Laura F. Grice & Sohye Yoon & Emily F. Willis & Minh Tran & Pui Yeng Lam & Arti Raghubar & Priyakshi Kalita-de Croft & Sunil Lakhani & Jana Vukovic & Ma, 2023. "Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
- Shirong Zhang & Shutao He & Xin Zhu & Yunfei Wang & Qionghuan Xie & Xianrang Song & Chunwei Xu & Wenxian Wang & Ligang Xing & Chengqing Xia & Qian Wang & Wenfeng Li & Xiaochen Zhang & Jinming Yu & She, 2023. "DNA methylation profiling to determine the primary sites of metastatic cancers using formalin-fixed paraffin-embedded tissues," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- David L. Hölscher & Nassim Bouteldja & Mehdi Joodaki & Maria L. Russo & Yu-Chia Lan & Alireza Vafaei Sadr & Mingbo Cheng & Vladimir Tesar & Saskia V. Stillfried & Barbara M. Klinkhammer & Jonathan Bar, 2023. "Next-Generation Morphometry for pathomics-data mining in histopathology," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Kang-Bo Huang & Cheng-Peng Gui & Yun-Ze Xu & Xue-Song Li & Hong-Wei Zhao & Jia-Zheng Cao & Yu-Hang Chen & Yi-Hui Pan & Bing Liao & Yun Cao & Xin-Ke Zhang & Hui Han & Fang-Jian Zhou & Ran-Yi Liu & Wen-, 2024. "A multi-classifier system integrated by clinico-histology-genomic analysis for predicting recurrence of papillary renal cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Petr Holub & Heimo Müller & Tomáš Bíl & Luca Pireddu & Markus Plass & Fabian Prasser & Irene Schlünder & Kurt Zatloukal & Rudolf Nenutil & Tomáš Brázdil, 2023. "Privacy risks of whole-slide image sharing in digital pathology," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Yuanning Zheng & Francisco Carrillo-Perez & Marija Pizurica & Dieter Henrik Heiland & Olivier Gevaert, 2023. "Spatial cellular architecture predicts prognosis in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41195-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.