IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50092-8.html
   My bibliography  Save this article

Nanosecond chain dynamics of single-stranded nucleic acids

Author

Listed:
  • Mark F. Nüesch

    (University of Zurich)

  • Lisa Pietrek

    (Max Planck Institute of Biophysics)

  • Erik D. Holmstrom

    (University of Zurich
    University of Kansas
    University of Kansas)

  • Daniel Nettels

    (University of Zurich)

  • Valentin Roten

    (University of Zurich)

  • Rafael Kronenberg-Tenga

    (University of Zurich)

  • Ohad Medalia

    (University of Zurich)

  • Gerhard Hummer

    (Max Planck Institute of Biophysics
    Goethe University Frankfurt)

  • Benjamin Schuler

    (University of Zurich
    University of Zurich)

Abstract

The conformational dynamics of single-stranded nucleic acids are fundamental for nucleic acid folding and function. However, their elementary chain dynamics have been difficult to resolve experimentally. Here we employ a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and nanophotonic enhancement to determine the conformational ensembles and rapid chain dynamics of short single-stranded nucleic acids in solution. To interpret the experimental results in terms of end-to-end distance dynamics, we utilize the hierarchical chain growth approach, simple polymer models, and refinement with Bayesian inference to generate structural ensembles that closely align with the experimental data. The resulting chain reconfiguration times are exceedingly rapid, in the 10-ns range. Solvent viscosity-dependent measurements indicate that these dynamics of single-stranded nucleic acids exhibit negligible internal friction and are thus dominated by solvent friction. Our results provide a detailed view of the conformational distributions and rapid dynamics of single-stranded nucleic acids.

Suggested Citation

  • Mark F. Nüesch & Lisa Pietrek & Erik D. Holmstrom & Daniel Nettels & Valentin Roten & Rafael Kronenberg-Tenga & Ohad Medalia & Gerhard Hummer & Benjamin Schuler, 2024. "Nanosecond chain dynamics of single-stranded nucleic acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50092-8
    DOI: 10.1038/s41467-024-50092-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50092-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50092-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Schuler & Everett A. Lipman & William A. Eaton, 2002. "Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy," Nature, Nature, vol. 419(6908), pages 743-747, October.
    2. Nicola Galvanetto & Miloš T. Ivanović & Aritra Chowdhury & Andrea Sottini & Mark F. Nüesch & Daniel Nettels & Robert B. Best & Benjamin Schuler, 2023. "Extreme dynamics in a biomolecular condensate," Nature, Nature, vol. 619(7971), pages 876-883, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashish Joshi & Anuja Walimbe & Anamika Avni & Sandeep K. Rai & Lisha Arora & Snehasis Sarkar & Samrat Mukhopadhyay, 2023. "Single-molecule FRET unmasks structural subpopulations and crucial molecular events during FUS low-complexity domain phase separation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Dinesh Sundaravadivelu Devarajan & Jiahui Wang & Beata Szała-Mendyk & Shiv Rekhi & Arash Nikoubashman & Young C. Kim & Jeetain Mittal, 2024. "Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Zhaowei Liu & Haipei Liu & Andrés M. Vera & Byeongseon Yang & Philip Tinnefeld & Michael A. Nash, 2024. "Engineering an artificial catch bond using mechanical anisotropy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Rosa Antón & Miguel Á. Treviño & David Pantoja-Uceda & Sara Félix & María Babu & Eurico J. Cabrita & Markus Zweckstetter & Philip Tinnefeld & Andrés M. Vera & Javier Oroz, 2024. "Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Wenwen Yu & Ke Jin & Dandan Wang & Nankai Wang & Yangyang Li & Yanfeng Liu & Jianghua Li & Guocheng Du & Xueqin Lv & Jian Chen & Rodrigo Ledesma-Amaro & Long Liu, 2024. "De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Andreas Hartmann & Koushik Sreenivasa & Mathias Schenkel & Neharika Chamachi & Philipp Schake & Georg Krainer & Michael Schlierf, 2023. "An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Saumyak Mukherjee & Lars V. Schäfer, 2023. "Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Mingu Kang & Hyunwoo Kim & Elham Oleiki & Yeonjeong Koo & Hyeongwoo Lee & Huitae Joo & Jinseong Choi & Taeyong Eom & Geunsik Lee & Yung Doug Suh & Kyoung-Duck Park, 2022. "Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Martin Hoefling & Nicola Lima & Dominik Haenni & Claus A M Seidel & Benjamin Schuler & Helmut Grubmüller, 2011. "Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-19, May.
    12. Antonio B Oliveira Jr. & Francisco M Fatore & Fernando V Paulovich & Osvaldo N Oliveira Jr. & Vitor B P Leite, 2014. "Visualization of Protein Folding Funnels in Lattice Models," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50092-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.