IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0100861.html
   My bibliography  Save this article

Visualization of Protein Folding Funnels in Lattice Models

Author

Listed:
  • Antonio B Oliveira Jr.
  • Francisco M Fatore
  • Fernando V Paulovich
  • Osvaldo N Oliveira Jr.
  • Vitor B P Leite

Abstract

Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.

Suggested Citation

  • Antonio B Oliveira Jr. & Francisco M Fatore & Fernando V Paulovich & Osvaldo N Oliveira Jr. & Vitor B P Leite, 2014. "Visualization of Protein Folding Funnels in Lattice Models," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
  • Handle: RePEc:plo:pone00:0100861
    DOI: 10.1371/journal.pone.0100861
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100861
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0100861&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0100861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Schuler & Everett A. Lipman & William A. Eaton, 2002. "Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy," Nature, Nature, vol. 419(6908), pages 743-747, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashish Joshi & Anuja Walimbe & Anamika Avni & Sandeep K. Rai & Lisha Arora & Snehasis Sarkar & Samrat Mukhopadhyay, 2023. "Single-molecule FRET unmasks structural subpopulations and crucial molecular events during FUS low-complexity domain phase separation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Zhaowei Liu & Haipei Liu & Andrés M. Vera & Byeongseon Yang & Philip Tinnefeld & Michael A. Nash, 2024. "Engineering an artificial catch bond using mechanical anisotropy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Andreas Hartmann & Koushik Sreenivasa & Mathias Schenkel & Neharika Chamachi & Philipp Schake & Georg Krainer & Michael Schlierf, 2023. "An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Mingu Kang & Hyunwoo Kim & Elham Oleiki & Yeonjeong Koo & Hyeongwoo Lee & Huitae Joo & Jinseong Choi & Taeyong Eom & Geunsik Lee & Yung Doug Suh & Kyoung-Duck Park, 2022. "Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Martin Hoefling & Nicola Lima & Dominik Haenni & Claus A M Seidel & Benjamin Schuler & Helmut Grubmüller, 2011. "Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-19, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0100861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.