IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45872-1.html
   My bibliography  Save this article

How to steer active colloids up a vertical wall

Author

Listed:
  • Adérito Fins Carreira

    (Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière)

  • Adam Wysocki

    (Saarland University)

  • Christophe Ybert

    (Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière)

  • Mathieu Leocmach

    (Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière)

  • Heiko Rieger

    (Saarland University
    Leibniz Institute for New Materials INM)

  • Cécile Cottin-Bizonne

    (Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière)

Abstract

An important challenge in active matter lies in harnessing useful global work from entities that produce work locally, e.g., via self-propulsion. We investigate here the active matter version of a classical capillary rise effect, by considering a non-phase separated sediment of self-propelled Janus colloids in contact with a vertical wall. We provide experimental evidence of an unexpected and dynamic adsorption layer at the wall. Additionally, we develop a complementary numerical model that recapitulates the experimental observations. We show that an adhesive and aligning wall enhances the pre-existing polarity heterogeneity within the bulk, enabling polar active particles to climb up a wall against gravity, effectively powering a global flux. Such steady-state flux has no equivalent in a passive wetting layer.

Suggested Citation

  • Adérito Fins Carreira & Adam Wysocki & Christophe Ybert & Mathieu Leocmach & Heiko Rieger & Cécile Cottin-Bizonne, 2024. "How to steer active colloids up a vertical wall," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45872-1
    DOI: 10.1038/s41467-024-45872-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45872-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45872-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sambeeta Das & Astha Garg & Andrew I. Campbell & Jonathan Howse & Ayusman Sen & Darrell Velegol & Ramin Golestanian & Stephen J. Ebbens, 2015. "Boundaries can steer active Janus spheres," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    2. F. Ginot & I. Theurkauff & F. Detcheverry & C. Ybert & C. Cottin-Bizonne, 2018. "Aggregation-fragmentation and individual dynamics of active clusters," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Juliane Simmchen & Jaideep Katuri & William E. Uspal & Mihail N. Popescu & Mykola Tasinkevych & Samuel Sánchez, 2016. "Topographical pathways guide chemical microswimmers," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristóvão S. Dias & Manish Trivedi & Giovanni Volpe & Nuno A. M. Araújo & Giorgio Volpe, 2023. "Environmental memory boosts group formation of clueless individuals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Stefania Ketzetzi & Melissa Rinaldin & Pim Dröge & Joost de Graaf & Daniela J. Kraft, 2022. "Activity-induced interactions and cooperation of artificial microswimmers in one-dimensional environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Hao Wu & Xiangyi Meng & Michael M. Danziger & Sean P. Cornelius & Hui Tian & Albert-László Barabási, 2022. "Fragmentation of outage clusters during the recovery of power distribution grids," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Noman Hanif Barbhuiya & A. G. Yodh & Chandan K. Mishra, 2023. "Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Helena Massana-Cid & Claudio Maggi & Giacomo Frangipane & Roberto Di Leonardo, 2022. "Rectification and confinement of photokinetic bacteria in an optical feedback loop," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Sánchez, R. & Díaz-Leyva, P., 2018. "Self-assembly and speed distributions of active granular particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 11-19.
    7. María J. Esplandiu & David Reguera & Daniel Romero-Guzmán & Amparo M. Gallardo-Moreno & Jordi Fraxedas, 2022. "From radial to unidirectional water pumping in zeta-potential modulated Nafion nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Jens Grauer & Falko Schmidt & Jesús Pineda & Benjamin Midtvedt & Hartmut Löwen & Giovanni Volpe & Benno Liebchen, 2021. "Active droploids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Zhiyuan Zhang & Alexander Sukhov & Jens Harting & Paolo Malgaretti & Daniel Ahmed, 2022. "Rolling microswarms along acoustic virtual walls," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Dolachai Boniface & Sergi G. Leyva & Ignacio Pagonabarraga & Pietro Tierno, 2024. "Clustering induces switching between phoretic and osmotic propulsion in active colloidal rafts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45872-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.