IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49481-w.html
   My bibliography  Save this article

Income and racial disparity in household publicly available electric vehicle infrastructure accessibility

Author

Listed:
  • Jiehong Lou

    (University of Maryland)

  • Xingchi Shen

    (Yale University)

  • Deb A. Niemeier

    (University of Maryland)

  • Nathan Hultman

    (University of Maryland)

Abstract

Publicly available electric vehicle (EV) infrastructure is pivotal for the United States EV transition by 2030. Existing infrastructure lacks equitably distribution to low-income and underrepresented communities, impeding mass adoption. Our study, utilizing 2021 micro-level data from 121 million United States households, comprehensively examines income and racial disparities in EV infrastructure accessibility. Our analysis of national averages indicates that lower-income groups face less accessibility to public EV infrastructure in both urban and rural geographies. Black households experience less rural accessibility, but greater urban accessibility compared to White households conditioning on income. However, our localized analysis uncovers significant variations in accessibility gaps among counties, rural and urban settings, and dwelling types. While Black households experience greater urban accessibility nationally, a closer look at the county level reveals diminishing advantages. This study identifies areas with pronounced inequality and urgent needs for enhanced accessibility, emphasizing the necessity for tailored solutions by local governments to enhance equitable access to EV infrastructure.

Suggested Citation

  • Jiehong Lou & Xingchi Shen & Deb A. Niemeier & Nathan Hultman, 2024. "Income and racial disparity in household publicly available electric vehicle infrastructure accessibility," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49481-w
    DOI: 10.1038/s41467-024-49481-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49481-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49481-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    2. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    3. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Severin Borenstein & Lucas W. Davis, 2016. "The Distributional Effects of US Clean Energy Tax Credits," Tax Policy and the Economy, University of Chicago Press, vol. 30(1), pages 191-234.
    5. Deborah A. Sunter & Sergio Castellanos & Daniel M. Kammen, 2019. "Disparities in rooftop photovoltaics deployment in the United States by race and ethnicity," Nature Sustainability, Nature, vol. 2(1), pages 71-76, January.
    6. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    7. Glaeser, Edward L. & Kahn, Matthew E. & Rappaport, Jordan, 2008. "Why do the poor live in cities The role of public transportation," Journal of Urban Economics, Elsevier, vol. 63(1), pages 1-24, January.
    8. Lucas W. Davis, 2019. "Evidence of a homeowner-renter gap for electric vehicles," Applied Economics Letters, Taylor & Francis Journals, vol. 26(11), pages 927-932, June.
    9. Brown, David P., 2022. "Socioeconomic and demographic disparities in residential battery storage adoption: Evidence from California," Energy Policy, Elsevier, vol. 164(C).
    10. Hsu, Chih-Wei & Fingerman, Kevin, 2021. "Public electric vehicle charger access disparities across race and income in California," Transport Policy, Elsevier, vol. 100(C), pages 59-67.
    11. Tarun M. Khanna & Giovanni Baiocchi & Max Callaghan & Felix Creutzig & Horia Guias & Neal R. Haddaway & Lion Hirth & Aneeque Javaid & Nicolas Koch & Sonja Laukemper & Andreas Löschel & Maria del Mar Z, 2021. "A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings," Nature Energy, Nature, vol. 6(9), pages 925-932, September.
    12. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics, revised 26 Jul 2024.
    2. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    3. Hamza El Hafdaoui & Hamza El Alaoui & Salma Mahidat & Zakaria El Harmouzi & Ahmed Khallaayoun, 2023. "Impact of Hot Arid Climate on Optimal Placement of Electric Vehicle Charging Stations," Energies, MDPI, vol. 16(2), pages 1-19, January.
    4. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    5. Helmke-Long, Laura & Carley, Sanya & Konisky, David M., 2022. "Municipal government adaptive capacity programs for vulnerable populations during the U.S. energy transition," Energy Policy, Elsevier, vol. 167(C).
    6. Carley, Sanya & Engle, Caroline & Konisky, David M., 2021. "An analysis of energy justice programs across the United States," Energy Policy, Elsevier, vol. 152(C).
    7. Holt, Emily G. & Sunter, Deborah A., 2024. "National disparities in residential energy tax credits in the United States," Energy, Elsevier, vol. 300(C).
    8. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    10. Loni, Abdolah & Asadi, Somayeh, 2023. "Data-driven equitable placement for electric vehicle charging stations: Case study San Francisco," Energy, Elsevier, vol. 282(C).
    11. Hui Zhao & Jing Gao & Xian Cheng, 2023. "Electric Vehicle Solar Charging Station Siting Study Based on GIS and Multi-Criteria Decision-Making: A Case Study of China," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    12. Jiang, Qinhua & Zhang, Ning & Yueshuai He, Brian & Lee, Changju & Ma, Jiaqi, 2024. "Large-scale public charging demand prediction with a scenario- and activity-based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    13. Antonia Golab & Sebastian Zwickl-Bernhard & Hans Auer, 2022. "Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network," Energies, MDPI, vol. 15(6), pages 1-26, March.
    14. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2024. "A comprehensive framework for electric vehicle charging station siting along highways using weighted sum method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Gan, Zhongying, 2023. "Do electric vehicle charger locations respond to the potential charging demands from multi-unit dwellings? Evidence from Los Angeles County," Transport Policy, Elsevier, vol. 138(C), pages 74-93.
    16. Di Xu & Wenhui Pei & Qi Zhang, 2022. "Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience," Energies, MDPI, vol. 15(14), pages 1-16, July.
    17. David M. Konisky & Sanya Carley, 2021. "What We Can Learn From The Green New Deal About The Importance Of Equity In National Climate Policy," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(3), pages 996-1002, June.
    18. Randall Wigle, Istvan Kery, 2021. "Rationalizing Policy Support for Zero Emission Vehicles in Canada," LCERPA Working Papers bm0128, Laurier Centre for Economic Research and Policy Analysis.
    19. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    20. Brown, David P., 2022. "Socioeconomic and demographic disparities in residential battery storage adoption: Evidence from California," Energy Policy, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49481-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.