IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3203.html
   My bibliography  Save this article

Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites

Author

Listed:
  • Yupeng Zheng

    (Northwestern University)

  • Paul M. Thomas

    (Northwestern University)

  • Neil L. Kelleher

    (Northwestern University
    Feinberg School of Medicine, Northwestern University
    Northwestern University)

Abstract

Histone acetylation has long been determined as a highly dynamic modification associated with open chromatin and transcriptional activation. Here we develop a metabolic labelling scheme using stable isotopes to study the kinetics of acetylation turnover at 19 distinct lysines on histones H3, H4 and H2A. Using human HeLa S3 cells, the analysis reveals 12 sites of histone acetylation with fast turnover and 7 sites stable over a 30 h experiment. The sites showing fast turnover (anticipated from classical radioactive measurements of whole histones) have half-lives between ~1–2 h. To support this finding, we use a broad-spectrum deacetylase inhibitor to verify that only fast turnover sites display 2–10-fold increases in acetylation whereas long-lived sites clearly do not. Most of these stable sites lack extensive functional studies or localization within global chromatin, and their role in non-genetic mechanisms of inheritance is as yet unknown.

Suggested Citation

  • Yupeng Zheng & Paul M. Thomas & Neil L. Kelleher, 2013. "Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3203
    DOI: 10.1038/ncomms3203
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3203
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Liebner & Sinan Kilic & Jonas Walter & Hitoshi Aibara & Takeo Narita & Chunaram Choudhary, 2024. "Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Michael S. Werner & Tobias Loschko & Thomas King & Shelley Reich & Tobias Theska & Mirita Franz-Wachtel & Boris Macek & Ralf J. Sommer, 2023. "Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.