IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31378-1.html
   My bibliography  Save this article

Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli

Author

Listed:
  • Bill Söderström

    (University of Technology Sydney)

  • Matthew J. Pittorino

    (University of Technology Sydney)

  • Daniel O. Daley

    (Stockholm University)

  • Iain G. Duggin

    (University of Technology Sydney)

Abstract

During infection of bladder epithelial cells, uropathogenic Escherichia coli (UPEC) can stop dividing and grow into highly filamentous forms. Here, we find that some filaments of E. coli UTI89 released from infected cells grow very rapidly and by more than 100 μm before initiating division, whereas others do not survive, suggesting that infection-related filamentation (IRF) is a stress response that promotes bacterial dispersal. IRF is accompanied by unstable, dynamic repositioning of FtsZ division rings. In contrast, DamX, which is associated with normal cell division and is also essential for IRF, is distributed uniformly around the cell envelope during filamentation. When filaments initiate division to regenerate rod cells, DamX condenses into stable rings prior to division. The DamX rings maintain consistent thickness during constriction and remain at the septum until after membrane fusion. Deletion of damX affects vegetative cell division in UTI89 (but not in the model E. coli K-12), and, during infection, blocks filamentation and reduces bacterial cell integrity. IRF therefore involves DamX distribution throughout the membrane and prevention of FtsZ ring stabilization, leading to cell division arrest. DamX then reassembles into stable division rings for filament division, promoting dispersal and survival during infection.

Suggested Citation

  • Bill Söderström & Matthew J. Pittorino & Daniel O. Daley & Iain G. Duggin, 2022. "Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31378-1
    DOI: 10.1038/s41467-022-31378-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31378-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31378-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marten Postma & Joachim Goedhart, 2019. "PlotsOfData—A web app for visualizing data together with their summaries," PLOS Biology, Public Library of Science, vol. 17(3), pages 1-8, March.
    2. Joshua W. McCausland & Xinxing Yang & Georgia R. Squyres & Zhixin Lyu & Kevin E. Bruce & Melissa M. Lamanna & Bill Söderström & Ethan C. Garner & Malcolm E. Winkler & Jie Xiao & Jian Liu, 2021. "Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Bill Söderström & Alexander Badrutdinov & Helena Chan & Ulf Skoglund, 2018. "Cell shape-independent FtsZ dynamics in synthetically remodeled bacterial cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alice Peysson & Noura Zariohi & Marie Gendrel & Amandine Chambert-Loir & Noémie Frébault & Elise Cheynet & Olga Andrini & Thomas Boulin, 2024. "Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Junso Fujita & Hiroshi Amesaka & Takuya Yoshizawa & Kota Hibino & Natsuki Kamimura & Natsuko Kuroda & Takamoto Konishi & Yuki Kato & Mizuho Hara & Tsuyoshi Inoue & Keiichi Namba & Shun-ichi Tanaka & H, 2023. "Structures of a FtsZ single protofilament and a double-helical tube in complex with a monobody," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Frederic Li Mow Chee & Bruno Beernaert & Billie G. C. Griffith & Alexander E. P. Loftus & Yatendra Kumar & Jimi C. Wills & Martin Lee & Jessica Valli & Ann P. Wheeler & J. Douglas Armstrong & Maddy Pa, 2023. "Mena regulates nesprin-2 to control actin–nuclear lamina associations, trans-nuclear membrane signalling and gene expression," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Zhixin Lyu & Atsushi Yahashiri & Xinxing Yang & Joshua W. McCausland & Gabriela M. Kaus & Ryan McQuillen & David S. Weiss & Jie Xiao, 2022. "FtsN maintains active septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthases in E. coli," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Brooke M. Britton & Remy A. Yovanno & Sara F. Costa & Joshua McCausland & Albert Y. Lau & Jie Xiao & Zach Hensel, 2023. "Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Emma J. Banks & Mauricio Valdivia-Delgado & Jacob Biboy & Amber Wilson & Ian T. Cadby & Waldemar Vollmer & Carey Lambert & Andrew L. Lovering & R. Elizabeth Sockett, 2022. "Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Philipp Radler & Natalia Baranova & Paulo Caldas & Christoph Sommer & Mar López-Pelegrín & David Michalik & Martin Loose, 2022. "In vitro reconstitution of Escherichia coli divisome activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Joachim Goedhart, 2020. "PlotTwist: A web app for plotting and annotating continuous data," PLOS Biology, Public Library of Science, vol. 18(1), pages 1-10, January.
    9. Heather Schiller & Yirui Hong & Joshua Kouassi & Theopi Rados & Jasmin Kwak & Anthony DiLucido & Daniel Safer & Anita Marchfelder & Friedhelm Pfeiffer & Alexandre Bisson & Stefan Schulze & Mechthild P, 2024. "Identification of structural and regulatory cell-shape determinants in Haloferax volcanii," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Adam Byron & Billie G. C. Griffith & Ana Herrero & Alexander E. P. Loftus & Emma S. Koeleman & Linda Kogerman & John C. Dawson & Niamh McGivern & Jayne Culley & Graeme R. Grimes & Bryan Serrels & Alex, 2022. "Characterisation of a nucleo-adhesome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31378-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.