IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48938-2.html
   My bibliography  Save this article

A unified framework for estimating country-specific cumulative incidence for 18 diseases stratified by polygenic risk

Author

Listed:
  • Bradley Jermy

    (University of Helsinki)

  • Kristi Läll

    (University of Tartu)

  • Brooke N. Wolford

    (Norwegian University of Science and Technology)

  • Ying Wang

    (Massachusetts General Hospital
    Broad Institute of MIT and Harvard)

  • Kristina Zguro

    (University of Siena)

  • Yipeng Cheng

    (University of Edinburgh)

  • Masahiro Kanai

    (Massachusetts General Hospital
    Broad Institute of MIT and Harvard)

  • Stavroula Kanoni

    (Queen Mary University of London)

  • Zhiyu Yang

    (University of Helsinki)

  • Tuomo Hartonen

    (University of Helsinki)

  • Remo Monti

    (University of Potsdam)

  • Julian Wanner

    (University of Helsinki
    University of Potsdam)

  • Omar Youssef

    (Hospital District of Helsinki and Uusimaa (HUS)
    University of Helsinki)

  • Christoph Lippert

    (University of Potsdam
    Icahn School of Medicine at Mount Sinai)

  • David Heel

    (Queen Mary University of London)

  • Yukinori Okada

    (the University of Tokyo
    Osaka University Graduate School of Medicine
    RIKEN Center for Integrative Medical Sciences
    Osaka University)

  • Daniel L. McCartney

    (University of Edinburgh)

  • Caroline Hayward

    (University of Edinburgh)

  • Riccardo E. Marioni

    (University of Edinburgh)

  • Simone Furini

    (University of Siena
    University of Bologna)

  • Alessandra Renieri

    (University of Siena
    University of Siena
    Azienda Ospedaliera Universitaria Senese)

  • Alicia R. Martin

    (Massachusetts General Hospital
    Broad Institute of MIT and Harvard)

  • Benjamin M. Neale

    (Massachusetts General Hospital
    Broad Institute of MIT and Harvard)

  • Kristian Hveem

    (Norwegian University of Science and Technology
    Nord-Trøndelag Hospital Trust)

  • Reedik Mägi

    (University of Tartu)

  • Aarno Palotie

    (University of Helsinki
    Massachusetts General Hospital
    Broad Institute of MIT and Harvard)

  • Henrike Heyne

    (University of Helsinki
    University of Potsdam
    Icahn School of Medicine at Mount Sinai)

  • Nina Mars

    (University of Helsinki
    Massachusetts General Hospital
    Broad Institute of MIT and Harvard)

  • Andrea Ganna

    (University of Helsinki
    Broad Institute of MIT and Harvard)

  • Samuli Ripatti

    (University of Helsinki
    Broad Institute of MIT and Harvard
    University of Helsinki)

Abstract

Polygenic scores (PGSs) offer the ability to predict genetic risk for complex diseases across the life course; a key benefit over short-term prediction models. To produce risk estimates relevant to clinical and public health decision-making, it is important to account for varying effects due to age and sex. Here, we develop a novel framework to estimate country-, age-, and sex-specific estimates of cumulative incidence stratified by PGS for 18 high-burden diseases. We integrate PGS associations from seven studies in four countries (N = 1,197,129) with disease incidences from the Global Burden of Disease. PGS has a significant sex-specific effect for asthma, hip osteoarthritis, gout, coronary heart disease and type 2 diabetes (T2D), with all but T2D exhibiting a larger effect in men. PGS has a larger effect in younger individuals for 13 diseases, with effects decreasing linearly with age. We show for breast cancer that, relative to individuals in the bottom 20% of polygenic risk, the top 5% attain an absolute risk for screening eligibility 16.3 years earlier. Our framework increases the generalizability of results from biobank studies and the accuracy of absolute risk estimates by appropriately accounting for age- and sex-specific PGS effects. Our results highlight the potential of PGS as a screening tool which may assist in the early prevention of common diseases.

Suggested Citation

  • Bradley Jermy & Kristi Läll & Brooke N. Wolford & Ying Wang & Kristina Zguro & Yipeng Cheng & Masahiro Kanai & Stavroula Kanoni & Zhiyu Yang & Tuomo Hartonen & Remo Monti & Julian Wanner & Omar Yousse, 2024. "A unified framework for estimating country-specific cumulative incidence for 18 diseases stratified by polygenic risk," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48938-2
    DOI: 10.1038/s41467-024-48938-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48938-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48938-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qianqian Zhang & Florian Privé & Bjarni Vilhjálmsson & Doug Speed, 2021. "Improved genetic prediction of complex traits from individual-level data or summary statistics," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Oliver Pain & Kylie P Glanville & Saskia P Hagenaars & Saskia Selzam & Anna E Fürtjes & Héléna A Gaspar & Jonathan R I Coleman & Kaili Rimfeld & Gerome Breen & Robert Plomin & Lasse Folkersen & Cathry, 2021. "Evaluation of polygenic prediction methodology within a reference-standardized framework," PLOS Genetics, Public Library of Science, vol. 17(5), pages 1-22, May.
    3. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    4. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    5. Mitja I. Kurki & Juha Karjalainen & Priit Palta & Timo P. Sipilä & Kati Kristiansson & Kati M. Donner & Mary P. Reeve & Hannele Laivuori & Mervi Aavikko & Mari A. Kaunisto & Anu Loukola & Elisa Lahtel, 2023. "FinnGen provides genetic insights from a well-phenotyped isolated population," Nature, Nature, vol. 613(7944), pages 508-518, January.
    6. Sarah E. Graham & Jonas B. Nielsen & Matthew Zawistowski & Wei Zhou & Lars G. Fritsche & Maiken E. Gabrielsen & Anne Heidi Skogholt & Ida Surakka & Whitney E. Hornsby & Damian Fermin & Daniel B. Larac, 2019. "Sex-specific and pleiotropic effects underlying kidney function identified from GWAS meta-analysis," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Shiyu Zhang & Zheng Wang & Yijing Wang & Yixiao Zhu & Qiao Zhou & Xingxing Jian & Guihu Zhao & Jian Qiu & Kun Xia & Beisha Tang & Julian Mutz & Jinchen Li & Bin Li, 2024. "A metabolomic profile of biological aging in 250,341 individuals from the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Bingxin Zhao & Yujue Li & Zirui Fan & Zhenyi Wu & Juan Shu & Xiaochen Yang & Yilin Yang & Xifeng Wang & Bingxuan Li & Xiyao Wang & Carlos Copana & Yue Yang & Jinjie Lin & Yun Li & Jason L. Stein & Joa, 2024. "Eye-brain connections revealed by multimodal retinal and brain imaging genetics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Dmitrii Usoltsev & Nikita Kolosov & Oxana Rotar & Alexander Loboda & Maria Boyarinova & Ekaterina Moguchaya & Ekaterina Kolesova & Anastasia Erina & Kristina Tolkunova & Valeriia Rezapova & Ivan Molot, 2024. "Complex trait susceptibilities and population diversity in a sample of 4,145 Russians," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Abolfazl Doostparast Torshizi & Dongnhu T. Truong & Liping Hou & Bart Smets & Christopher D. Whelan & Shuwei Li, 2024. "Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Chamlee Cho & Beomsu Kim & Dan Say Kim & Mi Yeong Hwang & Injeong Shim & Minku Song & Yeong Chan Lee & Sang-Hyuk Jung & Sung Kweon Cho & Woong-Yang Park & Woojae Myung & Bong-Jo Kim & Ron Do & Hyon K., 2024. "Large-scale cross-ancestry genome-wide meta-analysis of serum urate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Kenichi Yamamoto & Kyuto Sonehara & Shinichi Namba & Takahiro Konuma & Hironori Masuko & Satoru Miyawaki & Yoichiro Kamatani & Nobuyuki Hizawa & Keiichi Ozono & Loic Yengo & Yukinori Okada, 2023. "Genetic footprints of assortative mating in the Japanese population," Nature Human Behaviour, Nature, vol. 7(1), pages 65-73, January.
    9. Hui Chen & Zeyang Wang & Lihai Gong & Qixuan Wang & Wenyan Chen & Jia Wang & Xuelian Ma & Ruofan Ding & Xing Li & Xudong Zou & Mireya Plass & Cheng Lian & Ting Ni & Gong-Hong Wei & Wei Li & Lin Deng &, 2024. "A distinct class of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide association study," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Yaohua Yang & Yaxin Chen & Shuai Xu & Xingyi Guo & Guochong Jia & Jie Ping & Xiang Shu & Tianying Zhao & Fangcheng Yuan & Gang Wang & Yufang Xie & Hang Ci & Hongmo Liu & Yawen Qi & Yongjun Liu & Dan L, 2024. "Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Andras Gezsi & Sandra Auwera & Hannu Mäkinen & Nora Eszlari & Gabor Hullam & Tamas Nagy & Sarah Bonk & Rubèn González-Colom & Xenia Gonda & Linda Garvert & Teemu Paajanen & Zsofia Gal & Kevin Kirchner, 2024. "Unique genetic and risk-factor profiles in clusters of major depressive disorder-related multimorbidity trajectories," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Jiacheng Miao & Hanmin Guo & Gefei Song & Zijie Zhao & Lin Hou & Qiongshi Lu, 2023. "Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Xiao-Yu He & Bang-Sheng Wu & Liu Yang & Yu Guo & Yue-Ting Deng & Ze-Yu Li & Chen-Jie Fei & Wei-Shi Liu & Yi-Jun Ge & Jujiao Kang & Jianfeng Feng & Wei Cheng & Qiang Dong & Jin-Tai Yu, 2024. "Genetic associations of protein-coding variants in venous thromboembolism," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. David R. Blair & Thomas J. Hoffmann & Joseph T. Shieh, 2022. "Common genetic variation associated with Mendelian disease severity revealed through cryptic phenotype analysis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Pavel Loginovic & Feiyi Wang & Jiang Li & Lauric Ferrat & Uyenlinh L. Mirshahi & H. Shanker Rao & Axel Petzold & Jessica Tyrrell & Harry D. Green & Michael N. Weedon & Andrea Ganna & Tiinamaija Tuomi , 2024. "Applying a genetic risk score model to enhance prediction of future multiple sclerosis diagnosis at first presentation with optic neuritis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Daniel J. Benjamin & David Cesarini & Patrick Turley & Alexander Strudwick Young, 2024. "Social-Science Genomics: Progress, Challenges, and Future Directions," NBER Working Papers 32404, National Bureau of Economic Research, Inc.
    17. Caitlin E. Carey & Rebecca Shafee & Robbee Wedow & Amanda Elliott & Duncan S. Palmer & John Compitello & Masahiro Kanai & Liam Abbott & Patrick Schultz & Konrad J. Karczewski & Samuel C. Bryant & Caro, 2024. "Principled distillation of UK Biobank phenotype data reveals underlying structure in human variation," Nature Human Behaviour, Nature, vol. 8(8), pages 1599-1615, August.
    18. Alexander T. Williams & Jing Chen & Kayesha Coley & Chiara Batini & Abril Izquierdo & Richard Packer & Erik Abner & Stavroula Kanoni & David J. Shepherd & Robert C. Free & Edward J. Hollox & Nigel J. , 2023. "Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Alexander S. F. Berry & Brenda M. Finucane & Scott M. Myers & Lauren K. Walsh & John M. Seibert & Christa Lese Martin & David H. Ledbetter & Matthew T. Oetjens, 2024. "A genome-first study of sex chromosome aneuploidies provides evidence of Y chromosome dosage effects on autism risk," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Whitney S Beck & Ed K Hall, 2018. "Confounding factors in algal phosphorus limitation experiments," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48938-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.