IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48903-z.html
   My bibliography  Save this article

Skin-inspired, sensory robots for electronic implants

Author

Listed:
  • Lin Zhang

    (University of North Carolina)

  • Sicheng Xing

    (University of North Carolina)

  • Haifeng Yin

    (University of North Carolina)

  • Hannah Weisbecker

    (University of North Carolina)

  • Hiep Thanh Tran

    (University of North Carolina)

  • Ziheng Guo

    (University of North Carolina)

  • Tianhong Han

    (North Carolina State University)

  • Yihang Wang

    (University of North Carolina)

  • Yihan Liu

    (University of North Carolina)

  • Yizhang Wu

    (University of North Carolina)

  • Wanrong Xie

    (University of North Carolina)

  • Chuqi Huang

    (University of North Carolina)

  • Wei Luo

    (University of North Carolina)

  • Michael Demaesschalck

    (University of North Carolina)

  • Collin McKinney

    (University of North Carolina)

  • Samuel Hankley

    (University of North Carolina)

  • Amber Huang

    (University of North Carolina)

  • Brynn Brusseau

    (University of North Carolina)

  • Jett Messenger

    (Purdue University)

  • Yici Zou

    (University of North Carolina)

  • Wubin Bai

    (University of North Carolina)

Abstract

Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.

Suggested Citation

  • Lin Zhang & Sicheng Xing & Haifeng Yin & Hannah Weisbecker & Hiep Thanh Tran & Ziheng Guo & Tianhong Han & Yihang Wang & Yihan Liu & Yizhang Wu & Wanrong Xie & Chuqi Huang & Wei Luo & Michael Demaessc, 2024. "Skin-inspired, sensory robots for electronic implants," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48903-z
    DOI: 10.1038/s41467-024-48903-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48903-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48903-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shiva Subbulakshmi Radhakrishnan & Amritanand Sebastian & Aaryan Oberoi & Sarbashis Das & Saptarshi Das, 2021. "A biomimetic neural encoder for spiking neural network," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Kazuya Matsumoto & Nobuki Sakikawa & Takashi Miyata, 2018. "Thermo-responsive gels that absorb moisture and ooze water," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Zhiqiang Zheng & Huaping Wang & Lixin Dong & Qing Shi & Jianing Li & Tao Sun & Qiang Huang & Toshio Fukuda, 2021. "Author Correction: Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    4. Barman, Surajit Das & Reza, Ahmed Wasif & Kumar, Narendra & Karim, Md. Ershadul & Munir, Abu Bakar, 2015. "Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1525-1552.
    5. Hao Zheng & Zhitao Zhang & Su Jiang & Biao Yan & Xiang Shi & Yuanting Xie & Xu Huang & Zeyang Yu & Huizhu Liu & Shijun Weng & Arto Nurmikko & Yuqiu Zhang & Huisheng Peng & Wendong Xu & Jiayi Zhang, 2019. "A shape-memory and spiral light-emitting device for precise multisite stimulation of nerve bundles," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    6. Zhiqiang Zheng & Huaping Wang & Lixin Dong & Qing Shi & Jianing Li & Tao Sun & Qiang Huang & Toshio Fukuda, 2021. "Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong Yang & Rong Tan & Haojian Lu & Toshio Fukuda & Yajing Shen, 2022. "Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Tong Li & Zhidong Wei & Fei Jin & Yongjiu Yuan & Weiying Zheng & Lili Qian & Hongbo Wang & Lisha Hua & Juan Ma & Huanhuan Zhang & Huaduo Gu & Michael G. Irwin & Ting Wang & Steven Wang & Zuankai Wang , 2023. "Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hyeon-Seok Lee & Jae-Jung Yun, 2020. "Three-Port Converter for Integrating Energy Storage and Wireless Power Transfer Systems in Future Residential Applications," Energies, MDPI, vol. 13(1), pages 1-16, January.
    4. Ben Minnaert & Franco Mastri & Nobby Stevens & Alessandra Costanzo & Mauro Mongiardo, 2018. "Coupling-Independent Capacitive Wireless Power Transfer Using Frequency Bifurcation," Energies, MDPI, vol. 11(7), pages 1-13, July.
    5. Fanfan Li & Dingwei Li & Chuanqing Wang & Guolei Liu & Rui Wang & Huihui Ren & Yingjie Tang & Yan Wang & Yitong Chen & Kun Liang & Qi Huang & Mohamad Sawan & Min Qiu & Hong Wang & Bowen Zhu, 2024. "An artificial visual neuron with multiplexed rate and time-to-first-spike coding," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Gerald K Ijemaru & Kenneth Li-Minn Ang & Jasmine KP Seng, 2022. "Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501477211, March.
    7. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    8. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    9. Ziheng Chen & Yibin Wang & Hui Chen & Junhui Law & Huayan Pu & Shaorong Xie & Feng Duan & Yu Sun & Na Liu & Jiangfan Yu, 2024. "A magnetic multi-layer soft robot for on-demand targeted adhesion," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Jacek Maciej Stankiewicz & Agnieszka Choroszucho & Adam Steckiewicz, 2021. "Estimation of the Maximum Efficiency and the Load Power in the Periodic WPT Systems Using Numerical and Circuit Models," Energies, MDPI, vol. 14(4), pages 1-20, February.
    11. Babatunde Olukotun & Julius Partridge & Richard Bucknall, 2019. "Finite Element Modeling and Analysis of High Power, Low-loss Flux-Pipe Resonant Coils for Static Bidirectional Wireless Power Transfer," Energies, MDPI, vol. 12(18), pages 1-21, September.
    12. Adam Steckiewicz & Jacek Maciej Stankiewicz & Agnieszka Choroszucho, 2020. "Numerical and Circuit Modeling of the Low-Power Periodic WPT Systems," Energies, MDPI, vol. 13(10), pages 1-17, May.
    13. Yi Xing & Mingjie Zhou & Yueguang Si & Chi-Yuan Yang & Liang-Wen Feng & Qilin Wu & Fei Wang & Xiaomin Wang & Wei Huang & Yuhua Cheng & Ruilin Zhang & Xiaozheng Duan & Jun Liu & Ping Song & Hengda Sun , 2023. "Integrated opposite charge grafting induced ionic-junction fiber," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Helin Yang & Kwok-Yan Lam & Liang Xiao & Zehui Xiong & Hao Hu & Dusit Niyato & H. Vincent Poor, 2022. "Lead federated neuromorphic learning for wireless edge artificial intelligence," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Minho Seong & Kahyun Sun & Somi Kim & Hyukjoo Kwon & Sang-Woo Lee & Sarath Chandra Veerla & Dong Kwan Kang & Jaeil Kim & Stalin Kondaveeti & Salah M. Tawfik & Hyung Wook Park & Hoon Eui Jeong, 2024. "Multifunctional Magnetic Muscles for Soft Robotics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Eteng, Akaa Agbaeze & Rahim, Sharul Kamal Abdul & Leow, Chee Yen & Jayaprakasam, Suhanya & Chew, Beng Wah, 2017. "Low-power near-field magnetic wireless energy transfer links: A review of architectures and design approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 486-505.
    18. Fakun Wang & Fangchen Hu & Mingjin Dai & Song Zhu & Fangyuan Sun & Ruihuan Duan & Chongwu Wang & Jiayue Han & Wenjie Deng & Wenduo Chen & Ming Ye & Song Han & Bo Qiang & Yuhao Jin & Yunda Chua & Nan C, 2023. "A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Win-Jet Luo & C. Bambang Dwi Kuncoro & Yean-Der Kuan, 2020. "Wireless Power Hanger Pad for Portable Wireless Audio Device Power Charger Application," Energies, MDPI, vol. 13(2), pages 1-18, January.
    20. Yinglai Hou & Zhizhi Sheng & Chen Fu & Jie Kong & Xuetong Zhang, 2022. "Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48903-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.