IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54283-1.html
   My bibliography  Save this article

A stochastic encoder using point defects in two-dimensional materials

Author

Listed:
  • Harikrishnan Ravichandran

    (Penn State University)

  • Theresia Knobloch

    (Institute for Microelectronics (TU Wien))

  • Shiva Subbulakshmi Radhakrishnan

    (Penn State University)

  • Christoph Wilhelmer

    (Institute for Microelectronics (TU Wien))

  • Sergei P. Stepanoff

    (Penn State University)

  • Bernhard Stampfer

    (Institute for Microelectronics (TU Wien))

  • Subir Ghosh

    (Penn State University)

  • Aaryan Oberoi

    (Penn State University)

  • Dominic Waldhoer

    (Institute for Microelectronics (TU Wien))

  • Chen Chen

    (Penn State University)

  • Joan M. Redwing

    (Penn State University
    Penn State University
    Penn State University)

  • Douglas E. Wolfe

    (Penn State University
    Penn State University
    Penn State University)

  • Tibor Grasser

    (Institute for Microelectronics (TU Wien))

  • Saptarshi Das

    (Penn State University
    Penn State University
    Penn State University
    Penn State University)

Abstract

While defects are undesirable for the reliability of electronic devices, particularly in scaled microelectronics, they have proven beneficial in numerous quantum and energy-harvesting applications. However, their potential for new computational paradigms, such as neuromorphic and brain-inspired computing, remains largely untapped. In this study, we harness defects in aggressively scaled field-effect transistors based on two-dimensional semiconductors to accelerate a stochastic inference engine that offers remarkable noise resilience. We use atomistic imaging, density functional theory calculations, device modeling, and low-temperature transport experiments to offer comprehensive insight into point defects in WSe2 FETs and their impact on random telegraph noise. We then use random telegraph noise to construct a stochastic encoder and demonstrate enhanced inference accuracy for noise-inflicted medical-MNIST images compared to a deterministic encoder, utilizing a pre-trained spiking neural network. Our investigation underscores the importance of leveraging intrinsic point defects in 2D materials as opportunities for neuromorphic computing.

Suggested Citation

  • Harikrishnan Ravichandran & Theresia Knobloch & Shiva Subbulakshmi Radhakrishnan & Christoph Wilhelmer & Sergei P. Stepanoff & Bernhard Stampfer & Subir Ghosh & Aaryan Oberoi & Dominic Waldhoer & Chen, 2024. "A stochastic encoder using point defects in two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54283-1
    DOI: 10.1038/s41467-024-54283-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54283-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54283-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yikai Zheng & Harikrishnan Ravichandran & Thomas F. Schranghamer & Nicholas Trainor & Joan M. Redwing & Saptarshi Das, 2022. "Hardware implementation of Bayesian network based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Shiva Subbulakshmi Radhakrishnan & Amritanand Sebastian & Aaryan Oberoi & Sarbashis Das & Saptarshi Das, 2021. "A biomimetic neural encoder for spiking neural network," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amritanand Sebastian & Rahul Pendurthi & Azimkhan Kozhakhmetov & Nicholas Trainor & Joshua A. Robinson & Joan M. Redwing & Saptarshi Das, 2022. "Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Subir Ghosh & Andrew Pannone & Dipanjan Sen & Akshay Wali & Harikrishnan Ravichandran & Saptarshi Das, 2023. "An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Fanfan Li & Dingwei Li & Chuanqing Wang & Guolei Liu & Rui Wang & Huihui Ren & Yingjie Tang & Yan Wang & Yitong Chen & Kun Liang & Qi Huang & Mohamad Sawan & Min Qiu & Hong Wang & Bowen Zhu, 2024. "An artificial visual neuron with multiplexed rate and time-to-first-spike coding," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Muhtasim Ul Karim Sadaf & Najam U Sakib & Andrew Pannone & Harikrishnan Ravichandran & Saptarshi Das, 2023. "A bio-inspired visuotactile neuron for multisensory integration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Helin Yang & Kwok-Yan Lam & Liang Xiao & Zehui Xiong & Hao Hu & Dusit Niyato & H. Vincent Poor, 2022. "Lead federated neuromorphic learning for wireless edge artificial intelligence," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Fakun Wang & Fangchen Hu & Mingjin Dai & Song Zhu & Fangyuan Sun & Ruihuan Duan & Chongwu Wang & Jiayue Han & Wenjie Deng & Wenduo Chen & Ming Ye & Song Han & Bo Qiang & Yuhao Jin & Yunda Chua & Nan C, 2023. "A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Yikai Zheng & Harikrishnan Ravichandran & Thomas F. Schranghamer & Nicholas Trainor & Joan M. Redwing & Saptarshi Das, 2022. "Hardware implementation of Bayesian network based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Akhil Dodda & Nicholas Trainor & Joan. M. Redwing & Saptarshi Das, 2022. "All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Lin Zhang & Sicheng Xing & Haifeng Yin & Hannah Weisbecker & Hiep Thanh Tran & Ziheng Guo & Tianhong Han & Yihang Wang & Yihan Liu & Yizhang Wu & Wanrong Xie & Chuqi Huang & Wei Luo & Michael Demaessc, 2024. "Skin-inspired, sensory robots for electronic implants," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54283-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.