IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48523-7.html
   My bibliography  Save this article

TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene

Author

Listed:
  • Evelyn Kabirova

    (Institute of Cytology and Genetics SB RAS)

  • Anastasiya Ryzhkova

    (Institute of Cytology and Genetics SB RAS)

  • Varvara Lukyanchikova

    (Institute of Cytology and Genetics SB RAS)

  • Anna Khabarova

    (Institute of Cytology and Genetics SB RAS)

  • Alexey Korablev

    (Institute of Cytology and Genetics SB RAS)

  • Tatyana Shnaider

    (Institute of Cytology and Genetics SB RAS)

  • Miroslav Nuriddinov

    (Institute of Cytology and Genetics SB RAS)

  • Polina Belokopytova

    (Institute of Cytology and Genetics SB RAS
    Novosibirsk State University)

  • Alexander Smirnov

    (Institute of Cytology and Genetics SB RAS)

  • Nikita V. Khotskin

    (Institute of Cytology and Genetics SB RAS)

  • Galina Kontsevaya

    (Institute of Cytology and Genetics SB RAS)

  • Irina Serova

    (Institute of Cytology and Genetics SB RAS)

  • Nariman Battulin

    (Institute of Cytology and Genetics SB RAS
    Novosibirsk State University)

Abstract

Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation — a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.

Suggested Citation

  • Evelyn Kabirova & Anastasiya Ryzhkova & Varvara Lukyanchikova & Anna Khabarova & Alexey Korablev & Tatyana Shnaider & Miroslav Nuriddinov & Polina Belokopytova & Alexander Smirnov & Nikita V. Khotskin, 2024. "TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48523-7
    DOI: 10.1038/s41467-024-48523-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48523-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48523-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Georg A. Busslinger & Roman R. Stocsits & Petra van der Lelij & Elin Axelsson & Antonio Tedeschi & Niels Galjart & Jan-Michael Peters, 2017. "Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl," Nature, Nature, vol. 544(7651), pages 503-507, April.
    2. Giulia Cova & Juliane Glaser & Robert Schöpflin & Cesar Augusto Prada-Medina & Salaheddine Ali & Martin Franke & Rita Falcone & Miriam Federer & Emanuela Ponzi & Romina Ficarella & Francesca Novara & , 2023. "Publisher Correction: Combinatorial effects on gene expression at the Lbx1/Fgf8 locus resolve split-hand/foot malformation type 3," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    3. Yu Amanda Guo & Mei Mei Chang & Weitai Huang & Wen Fong Ooi & Manjie Xing & Patrick Tan & Anders Jacobsen Skanderup, 2018. "Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    4. Jessica Zuin & Gregory Roth & Yinxiu Zhan & Julie Cramard & Josef Redolfi & Ewa Piskadlo & Pia Mach & Mariya Kryzhanovska & Gergely Tihanyi & Hubertus Kohler & Mathias Eder & Christ Leemans & Bas Stee, 2022. "Nonlinear control of transcription through enhancer–promoter interactions," Nature, Nature, vol. 604(7906), pages 571-577, April.
    5. A. Rasim Barutcu & Philipp G. Maass & Jordan P. Lewandowski & Catherine L. Weiner & John L. Rinn, 2018. "A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    6. William A. Flavahan & Yotam Drier & Brian B. Liau & Shawn M. Gillespie & Andrew S. Venteicher & Anat O. Stemmer-Rachamimov & Mario L. Suvà & Bradley E. Bernstein, 2016. "Insulator dysfunction and oncogene activation in IDH mutant gliomas," Nature, Nature, vol. 529(7584), pages 110-114, January.
    7. William W. Greenwald & He Li & Paola Benaglio & David Jakubosky & Hiroko Matsui & Anthony Schmitt & Siddarth Selvaraj & Matteo D’Antonio & Agnieszka D’Antonio-Chronowska & Erin N. Smith & Kelly A. Fra, 2019. "Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    8. Thomas M. Keane & Leo Goodstadt & Petr Danecek & Michael A. White & Kim Wong & Binnaz Yalcin & Andreas Heger & Avigail Agam & Guy Slater & Martin Goodson & Nicholas A. Furlotte & Eleazar Eskin & Chris, 2011. "Mouse genomic variation and its effect on phenotypes and gene regulation," Nature, Nature, vol. 477(7364), pages 289-294, September.
    9. Ioana Olan & Aled J. Parry & Stefan Schoenfelder & Masako Narita & Yoko Ito & Adelyne S. L. Chan & Guy St.C. Slater & Dóra Bihary & Masashige Bando & Katsuhiko Shirahige & Hiroshi Kimura & Shamith A., 2020. "Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    10. Giulia Cova & Juliane Glaser & Robert Schöpflin & Cesar Augusto Prada-Medina & Salaheddine Ali & Martin Franke & Rita Falcone & Miriam Federer & Emanuela Ponzi & Romina Ficarella & Francesca Novara & , 2023. "Combinatorial effects on gene expression at the Lbx1/Fgf8 locus resolve split-hand/foot malformation type 3," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Soohwan Oh & Jiaofang Shao & Joydeep Mitra & Feng Xiong & Matteo D’Antonio & Ruoyu Wang & Ivan Garcia-Bassets & Qi Ma & Xiaoyu Zhu & Joo-Hyung Lee & Sreejith J. Nair & Feng Yang & Kenneth Ohgi & Kelly, 2021. "Enhancer release and retargeting activates disease-susceptibility genes," Nature, Nature, vol. 595(7869), pages 735-740, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Ge & Haiyan Huang & Keqi Han & Wangjie Xu & Zhaoxia Wang & Qiang Wu, 2023. "Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Hossein Salari & Geneviève Fourel & Daniel Jost, 2024. "Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Matteo D’Antonio & Jennifer P. Nguyen & Timothy D. Arthur & Hiroko Matsui & Agnieszka D’Antonio-Chronowska & Kelly A. Frazer, 2023. "Fine mapping spatiotemporal mechanisms of genetic variants underlying cardiac traits and disease," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Aayush Kant & Zixian Guo & Vinayak Vinayak & Maria Victoria Neguembor & Wing Shun Li & Vasundhara Agrawal & Emily Pujadas & Luay Almassalha & Vadim Backman & Melike Lakadamyali & Maria Pia Cosma & Viv, 2024. "Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Roger Mulet-Lazaro & Stanley Herk & Margit Nuetzel & Aniko Sijs-Szabo & Noelia Díaz & Katherine Kelly & Claudia Erpelinck-Verschueren & Lucia Schwarzfischer-Pfeilschifter & Hanna Stanewsky & Ute Acker, 2024. "Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Teresa Robert-Finestra & Beatrice F. Tan & Hegias Mira-Bontenbal & Erika Timmers & Cristina Gontan & Sarra Merzouk & Benedetto Daniele Giaimo & François Dossin & Wilfred F. J. IJcken & John W. M. Mart, 2021. "SPEN is required for Xist upregulation during initiation of X chromosome inactivation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Chong Wang & Xiang Liu & Jun Liang & Yohei Narita & Weiyue Ding & Difei Li & Luyao Zhang & Hongbo Wang & Merrin Man Long Leong & Isabella Hou & Catherine Gerdt & Chang Jiang & Qian Zhong & Zhonghui Ta, 2023. "A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Sonali Narang & Yohana Ghebrechristos & Nikki A. Evensen & Nina Murrell & Sylwia Jasinski & Talia H. Ostrow & David T. Teachey & Elizabeth A. Raetz & Timothee Lionnet & Matthew Witkowski & Iannis Aifa, 2024. "Clonal evolution of the 3D chromatin landscape in patients with relapsed pediatric B-cell acute lymphoblastic leukemia," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Ioana Olan & Masami Ando-Kuri & Aled J. Parry & Tetsuya Handa & Stefan Schoenfelder & Peter Fraser & Yasuyuki Ohkawa & Hiroshi Kimura & Masako Narita & Masashi Narita, 2024. "HMGA1 orchestrates chromatin compartmentalization and sequesters genes into 3D networks coordinating senescence heterogeneity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Chunjuan Zhu & Zibo Chen & Qiwen Sun, 2022. "Stochastic Transcription with Alterable Synthesis Rates," Mathematics, MDPI, vol. 10(13), pages 1-20, June.
    14. Ayantika Sen Gupta & Chris Seidel & Dai Tsuchiya & Sean McKinney & Zulin Yu & Sarah E. Smith & Jay R. Unruh & Jennifer L. Gerton, 2023. "Defining a core configuration for human centromeres during mitosis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Patricia Gerdes & Sue Mei Lim & Adam D. Ewing & Michael R. Larcombe & Dorothy Chan & Francisco J. Sanchez-Luque & Lucinda Walker & Alexander L. Carleton & Cini James & Anja S. Knaupp & Patricia E. Car, 2022. "Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Markus Grosch & Laura Schraft & Adrian Chan & Leonie Küchenhoff & Kleopatra Rapti & Anne-Maud Ferreira & Julia Kornienko & Shengdi Li & Michael H. Radke & Chiara Krämer & Sandra Clauder-Münster & Emer, 2023. "Striated muscle-specific base editing enables correction of mutations causing dilated cardiomyopathy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Stamatis Papathanasiou & Styliani Markoulaki & Logan J. Blaine & Mitchell L. Leibowitz & Cheng-Zhong Zhang & Rudolf Jaenisch & David Pellman, 2021. "Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    18. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Samuel Abassah-Oppong & Matteo Zoia & Brandon J. Mannion & Raquel Rouco & Virginie Tissières & Cailyn H. Spurrell & Virginia Roland & Fabrice Darbellay & Anja Itum & Julie Gamart & Tabitha A. Festa-Da, 2024. "A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    20. Jasper Panten & Tobias Heinen & Christina Ernst & Nils Eling & Rebecca E. Wagner & Maja Satorius & John C. Marioni & Oliver Stegle & Duncan T. Odom, 2024. "The dynamic genetic determinants of increased transcriptional divergence in spermatids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48523-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.