IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v529y2016i7584d10.1038_nature16490.html
   My bibliography  Save this article

Insulator dysfunction and oncogene activation in IDH mutant gliomas

Author

Listed:
  • William A. Flavahan

    (Massachusetts General Hospital and Harvard Medical School
    Broad Institute of MIT and Harvard
    Howard Hughes Medical Institute)

  • Yotam Drier

    (Massachusetts General Hospital and Harvard Medical School
    Broad Institute of MIT and Harvard
    Howard Hughes Medical Institute)

  • Brian B. Liau

    (Massachusetts General Hospital and Harvard Medical School
    Broad Institute of MIT and Harvard
    Howard Hughes Medical Institute)

  • Shawn M. Gillespie

    (Massachusetts General Hospital and Harvard Medical School
    Broad Institute of MIT and Harvard
    Howard Hughes Medical Institute)

  • Andrew S. Venteicher

    (Massachusetts General Hospital and Harvard Medical School
    Broad Institute of MIT and Harvard
    Massachusetts General Hospital and Harvard Medical School)

  • Anat O. Stemmer-Rachamimov

    (Massachusetts General Hospital and Harvard Medical School)

  • Mario L. Suvà

    (Massachusetts General Hospital and Harvard Medical School
    Broad Institute of MIT and Harvard)

  • Bradley E. Bernstein

    (Massachusetts General Hospital and Harvard Medical School
    Broad Institute of MIT and Harvard
    Howard Hughes Medical Institute)

Abstract

An epigenetic mechanism in which gain-of-function IDH mutations promote gliomagenesis by disrupting chromosomal topology is presented, with IDH mutations causing the binding sites of the methylation-sensitive insulator CTCF to become hypermethylated; disruption of a CTCF boundary near the glioma oncogene PDGFRA allows a constitutive enhancer to contact and activate the oncogene aberrantly.

Suggested Citation

  • William A. Flavahan & Yotam Drier & Brian B. Liau & Shawn M. Gillespie & Andrew S. Venteicher & Anat O. Stemmer-Rachamimov & Mario L. Suvà & Bradley E. Bernstein, 2016. "Insulator dysfunction and oncogene activation in IDH mutant gliomas," Nature, Nature, vol. 529(7584), pages 110-114, January.
  • Handle: RePEc:nat:nature:v:529:y:2016:i:7584:d:10.1038_nature16490
    DOI: 10.1038/nature16490
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16490
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas Sim & Jean-Michel Carter & Kamalakshi Deka & Benita Kiat Tee Tan & Yirong Sim & Suet-Mien Tan & Yinghui Li, 2024. "TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Konstantin Okonechnikov & Aylin Camgöz & Owen Chapman & Sameena Wani & Donglim Esther Park & Jens-Martin Hübner & Abhijit Chakraborty & Meghana Pagadala & Rosalind Bump & Sahaana Chandran & Katerina K, 2023. "3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Chong Wang & Xiang Liu & Jun Liang & Yohei Narita & Weiyue Ding & Difei Li & Luyao Zhang & Hongbo Wang & Merrin Man Long Leong & Isabella Hou & Catherine Gerdt & Chang Jiang & Qian Zhong & Zhonghui Ta, 2023. "A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Xiao Ge & Haiyan Huang & Keqi Han & Wangjie Xu & Zhaoxia Wang & Qiang Wu, 2023. "Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Jamie L. Endicott & Paula A. Nolte & Hui Shen & Peter W. Laird, 2022. "Cell division drives DNA methylation loss in late-replicating domains in primary human cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Evelyn Kabirova & Anastasiya Ryzhkova & Varvara Lukyanchikova & Anna Khabarova & Alexey Korablev & Tatyana Shnaider & Miroslav Nuriddinov & Polina Belokopytova & Alexander Smirnov & Nikita V. Khotskin, 2024. "TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Giulia Schiroli & Vinay Kartha & Fabiana M. Duarte & Trine A. Kristiansen & Christina Mayerhofer & Rojesh Shrestha & Andrew Earl & Yan Hu & Tristan Tay & Catherine Rhee & Jason D. Buenrostro & David T, 2024. "Cell of origin epigenetic priming determines susceptibility to Tet2 mutation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Dominic D. G. Owens & Giorgio Anselmi & A. Marieke Oudelaar & Damien J. Downes & Alessandro Cavallo & Joe R. Harman & Ron Schwessinger & Akin Bucakci & Lucas Greder & Sara Ornellas & Danuta Jeziorska , 2022. "Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Sonali Narang & Yohana Ghebrechristos & Nikki A. Evensen & Nina Murrell & Sylwia Jasinski & Talia H. Ostrow & David T. Teachey & Elizabeth A. Raetz & Timothee Lionnet & Matthew Witkowski & Iannis Aifa, 2024. "Clonal evolution of the 3D chromatin landscape in patients with relapsed pediatric B-cell acute lymphoblastic leukemia," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Roger Mulet-Lazaro & Stanley Herk & Margit Nuetzel & Aniko Sijs-Szabo & Noelia Díaz & Katherine Kelly & Claudia Erpelinck-Verschueren & Lucia Schwarzfischer-Pfeilschifter & Hanna Stanewsky & Ute Acker, 2024. "Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    13. Katelyn L. Mortenson & Courtney Dawes & Emily R. Wilson & Nathan E. Patchen & Hailey E. Johnson & Jason Gertz & Swneke D. Bailey & Yang Liu & Katherine E. Varley & Xiaoyang Zhang, 2024. "3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Ting Xie & Adi Danieli-Mackay & Mariachiara Buccarelli & Mariano Barbieri & Ioanna Papadionysiou & Q. Giorgio D’Alessandris & Claudia Robens & Nadine Übelmesser & Omkar Suhas Vinchure & Liverana Laure, 2024. "Pervasive structural heterogeneity rewires glioblastoma chromosomes to sustain patient-specific transcriptional programs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:529:y:2016:i:7584:d:10.1038_nature16490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.