IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48058-x.html
   My bibliography  Save this article

Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities

Author

Listed:
  • Liyang Mao

    (Harbin Institute of Technology)

  • Peng Yang

    (Harbin Institute of Technology)

  • Chenyao Tian

    (Harbin Institute of Technology)

  • Xingjian Shen

    (Harbin Institute of Technology)

  • Feihao Wang

    (Harbin Institute of Technology)

  • Hao Zhang

    (Harbin Institute of Technology)

  • Xianghe Meng

    (Harbin Institute of Technology)

  • Hui Xie

    (Harbin Institute of Technology)

Abstract

Millimeter-scale soft continuum robots offer safety and adaptability in transluminal procedures due to their passive compliance, but this feature necessitates interactions with surrounding lumina, leading to potential medical risks and restricted mobility. Here, we introduce a millimeter-scale continuum robot, enabling apical extension while maintaining structural stability. Utilizing phase transition components, the robot executes cycles of tip-based elongation, steered accurately through programmable magnetic fields. Each motion cycle features a solid-like backbone for stability, and a liquid-like component for advancement, thereby enabling autonomous shaping without reliance on environmental interactions. Together with clinical imaging technologies, we demonstrate the capability of navigating through tortuous and fragile lumina to transport microsurgical tools. Once it reaches larger anatomical spaces such as stomach, it can morph into functional 3D structures that serve as surgical tools or sensing units, overcoming the constraints of initially narrow pathways. By leveraging this design paradigm, we anticipate enhanced safety, multi-functionality, and cooperative capabilities among millimeter-scale continuum robots, opening new avenues for transluminal robotic surgery.

Suggested Citation

  • Liyang Mao & Peng Yang & Chenyao Tian & Xingjian Shen & Feihao Wang & Hao Zhang & Xianghe Meng & Hui Xie, 2024. "Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48058-x
    DOI: 10.1038/s41467-024-48058-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48058-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48058-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheng Zhou & Youzhou Yang & Jiaxin Wang & Qingyang Wu & Zhuozhi Gu & Yuting Zhou & Xurui Liu & Yueying Yang & Hanchuan Tang & Qing Ling & Liu Wang & Jianfeng Zang, 2021. "Ferromagnetic soft catheter robots for minimally invasive bioprinting," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Lucio Pancaldi & Pietro Dirix & Adele Fanelli & Augusto Martins Lima & Nikolaos Stergiopulos & Pascal John Mosimann & Diego Ghezzi & Mahmut Selman Sakar, 2020. "Flow driven robotic navigation of microengineered endovascular probes," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Wenqi Hu & Guo Zhan Lum & Massimo Mastrangeli & Metin Sitti, 2018. "Small-scale soft-bodied robot with multimodal locomotion," Nature, Nature, vol. 554(7690), pages 81-85, February.
    4. Shengzhu Yi & Liu Wang & Zhipeng Chen & Jian Wang & Xingyi Song & Pengfei Liu & Yuanxi Zhang & Qingqing Luo & Lelun Peng & Zhigang Wu & Chuan Fei Guo & Lelun Jiang, 2022. "High-throughput fabrication of soft magneto-origami machines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Cisternas, Jaime & Concha, Andrés, 2024. "Searching nontrivial magnetic equilibria using the deflated Newton method," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Yuanxi Zhang & Chengfeng Pan & Pengfei Liu & Lelun Peng & Zhouming Liu & Yuanyuan Li & Qingyuan Wang & Tong Wu & Zhe Li & Carmel Majidi & Lelun Jiang, 2023. "Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Liwei Wang & Yilong Chang & Shuai Wu & Ruike Renee Zhao & Wei Chen, 2023. "Physics-aware differentiable design of magnetically actuated kirigami for shape morphing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Shengzhu Yi & Liu Wang & Zhipeng Chen & Jian Wang & Xingyi Song & Pengfei Liu & Yuanxi Zhang & Qingqing Luo & Lelun Peng & Zhigang Wu & Chuan Fei Guo & Lelun Jiang, 2022. "High-throughput fabrication of soft magneto-origami machines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Yubing Guo & Jiachen Zhang & Wenqi Hu & Muhammad Turab Ali Khan & Metin Sitti, 2021. "Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Ren Hao Soon & Zhen Yin & Metin Alp Dogan & Nihal Olcay Dogan & Mehmet Efe Tiryaki & Alp Can Karacakol & Asli Aydin & Pouria Esmaeili-Dokht & Metin Sitti, 2023. "Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Serena Arnaboldi & Gerardo Salinas & Sabrina Bichon & Sebastien Gounel & Nicolas Mano & Alexander Kuhn, 2023. "Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Wenfei Ai & Kai Hou & Jiaxin Wu & Yue Long & Kai Song, 2024. "Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Chenghai Li & Qiguang He & Yang Wang & Zhijian Wang & Zijun Wang & Raja Annapooranan & Michael I. Latz & Shengqiang Cai, 2022. "Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Rasool Nasseri & Negin Bouzari & Junting Huang & Hossein Golzar & Sarah Jankhani & Xiaowu (Shirley) Tang & Tizazu H. Mekonnen & Amirreza Aghakhani & Hamed Shahsavan, 2023. "Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Wenbo Li & Huyue Chen & Zhiran Yi & Fuyi Fang & Xinyu Guo & Zhiyuan Wu & Qiuhua Gao & Lei Shao & Jian Xu & Guang Meng & Wenming Zhang, 2023. "Self-vectoring electromagnetic soft robots with high operational dimensionality," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Yeongju Jung & Kangkyu Kwon & Jinwoo Lee & Seung Hwan Ko, 2024. "Untethered soft actuators for soft standalone robotics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Wenbo Liu & Youning Duo & Jiaqi Liu & Feiyang Yuan & Lei Li & Luchen Li & Gang Wang & Bohan Chen & Siqi Wang & Hui Yang & Yuchen Liu & Yanru Mo & Yun Wang & Bin Fang & Fuchun Sun & Xilun Ding & Chi Zh, 2022. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Tianlu Wang & Halim Ugurlu & Yingbo Yan & Mingtong Li & Meng Li & Anna-Maria Wild & Erdost Yildiz & Martina Schneider & Devin Sheehan & Wenqi Hu & Metin Sitti, 2022. "Adaptive wireless millirobotic locomotion into distal vasculature," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Shaojun Jiang & Bo Li & Jun Zhao & Dong Wu & Yiyuan Zhang & Zhipeng Zhao & Yiyuan Zhang & Hao Yu & Kexiang Shao & Cong Zhang & Rui Li & Chao Chen & Zuojun Shen & Jie Hu & Bin Dong & Ling Zhu & Jiawen , 2023. "Magnetic Janus origami robot for cross-scale droplet omni-manipulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48058-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.