IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0096100.html
   My bibliography  Save this article

Protein Thermodynamics Can Be Predicted Directly from Biological Growth Rates

Author

Listed:
  • Ross Corkrey
  • Tom A McMeekin
  • John P Bowman
  • David A Ratkowsky
  • June Olley
  • Tom Ross

Abstract

Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and including the highest temperature so far observed for growth (122°C). The results provide credible estimates of thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology. We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature dependence model. The model results provide strong support for a single highly-conserved reaction present in the last universal common ancestor (LUCA). This is remarkable in that it means that the growth rate dependence on temperature of unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model.

Suggested Citation

  • Ross Corkrey & Tom A McMeekin & John P Bowman & David A Ratkowsky & June Olley & Tom Ross, 2014. "Protein Thermodynamics Can Be Predicted Directly from Biological Growth Rates," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-15, May.
  • Handle: RePEc:plo:pone00:0096100
    DOI: 10.1371/journal.pone.0096100
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096100
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096100&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0096100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberts, G. O. & Gilks, W. R., 1994. "Convergence of Adaptive Direction Sampling," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 287-298, May.
    2. Bastien Boussau & Samuel Blanquart & Anamaria Necsulea & Nicolas Lartillot & Manolo Gouy, 2008. "Parallel adaptations to high temperatures in the Archaean eon," Nature, Nature, vol. 456(7224), pages 942-945, December.
    3. Heather L. True & Susan L. Lindquist, 2000. "A yeast prion provides a mechanism for genetic variation and phenotypic diversity," Nature, Nature, vol. 407(6803), pages 477-483, September.
    4. Lynn J. Rothschild & Rocco L. Mancinelli, 2001. "Life in extreme environments," Nature, Nature, vol. 409(6823), pages 1092-1101, February.
    5. Ross Corkrey & June Olley & David Ratkowsky & Tom McMeekin & Tom Ross, 2012. "Universality of Thermodynamic Constants Governing Biological Growth Rates," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisson, S.N. & Tarbath, M. & Corkrey, R. & Pinkard, E.A. & Laycock, B. & Howden, S.M. & Botwright Acuña, T. & Makin, A., 2016. "Ambient climate and soil effects on the headspace under clear mulch film," Agricultural Systems, Elsevier, vol. 142(C), pages 41-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kala Studens & Benjamin M. Bolker & Jean-Noël Candau, 2024. "Predicting the Temperature-Driven Development of Stage-Structured Insect Populations with a Bayesian Hierarchical Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 536-552, September.
    2. Simona Dzurendova & Boris Zimmermann & Achim Kohler & Valeria Tafintseva & Ondrej Slany & Milan Certik & Volha Shapaval, 2020. "Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-34, June.
    3. Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
    4. repec:jss:jstsof:07:i04 is not listed on IDEAS
    5. Silvia Díaz & Ángeles Aguilera & Carolina G. de Figueras & Patricia de Francisco & Sanna Olsson & Fernando Puente-Sánchez & José Eduardo González-Pastor, 2022. "Heterologous Expression of the Phytochelatin Synthase CaPCS2 from Chlamydomonas acidophila and Its Effect on Different Stress Factors in Escherichia coli," IJERPH, MDPI, vol. 19(13), pages 1-21, June.
    6. Yan-Ling Qi & Ya-Ting Chen & Yuan-Guo Xie & Yu-Xian Li & Yang-Zhi Rao & Meng-Meng Li & Qi-Jun Xie & Xing-Ru Cao & Lei Chen & Yan-Ni Qu & Zhen-Xuan Yuan & Zhi-Chao Xiao & Lu Lu & Jian-Yu Jiao & Wen-She, 2024. "Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Weishu Zhao & Bozitao Zhong & Lirong Zheng & Pan Tan & Yinzhao Wang & Hao Leng & Nicolas Souza & Zhuo Liu & Liang Hong & Xiang Xiao, 2022. "Proteome-wide 3D structure prediction provides insights into the ancestral metabolism of ancient archaea and bacteria," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Louis N. Irwin & Abel Méndez & Alberto G. Fairén & Dirk Schulze-Makuch, 2014. "Assessing the Possibility of Biological Complexity on Other Worlds, with an Estimate of the Occurrence of Complex Life in the Milky Way Galaxy," Challenges, MDPI, vol. 5(1), pages 1-16, May.
    9. Lucas Serra Moncadas & Cyrill Hofer & Paul-Adrian Bulzu & Jakob Pernthaler & Adrian-Stefan Andrei, 2024. "Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Bo Hu & Yuan Ji & Kam-Wah Tsui, 2008. "Bayesian Estimation of Inverse Dose Response," Biometrics, The International Biometric Society, vol. 64(4), pages 1223-1230, December.
    11. HOOGERHEIDE, Lennart F. & VAN DIJK, Herman K. & VAN OEST, Rutger D., 2007. "Simulation based Bayesian econometric inference: principles and some recent computational advances," LIDAM Discussion Papers CORE 2007015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Dimitrios - Georgios Kontopoulos & Arnaud Sentis & Martin Daufresne & Natalia Glazman & Anthony I. Dell & Samraat Pawar, 2024. "No universal mathematical model for thermal performance curves across traits and taxonomic groups," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Takefumi Yamazaki, 2018. "Financial friction sources in emerging economies: Structural estimation of sovereign default models," Discussion papers ron303, Policy Research Institute, Ministry of Finance Japan.
    14. Esmeralda Vicedo & Avner Schlessinger & Burkhard Rost, 2015. "Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    15. Tore Selland Kleppe, 2016. "Adaptive Step Size Selection for Hessian-Based Manifold Langevin Samplers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 788-805, September.
    16. Emmanuel C. Mamatzakis & Mike G. Tsionas, 2020. "Revealing forecaster's preferences: A Bayesian multivariate loss function approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 412-437, April.
    17. Antonia E Dalziel & Steven Delean & Sarah Heinrich & Phillip Cassey, 2016. "Persistence of Low Pathogenic Influenza A Virus in Water: A Systematic Review and Quantitative Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-24, October.
    18. Guoping Ren & Jie Ye & Qichang Hu & Dong Zhang & Yong Yuan & Shungui Zhou, 2024. "Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Mbalawata, Isambi S. & Särkkä, Simo & Vihola, Matti & Haario, Heikki, 2015. "Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 101-115.
    20. Liyan Song, 2023. "Toward Understanding Microbial Ecology to Restore a Degraded Ecosystem," IJERPH, MDPI, vol. 20(5), pages 1-9, March.
    21. Ricardo S. Ehlers & Stephen P. Brooks, 2008. "Adaptive Proposal Construction for Reversible Jump MCMC," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 677-690, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0096100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.