IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14246-3.html
   My bibliography  Save this article

Cryo-EM structure of the respiratory syncytial virus RNA polymerase

Author

Listed:
  • Dongdong Cao

    (Emory University School of Medicine)

  • Yunrong Gao

    (Emory University School of Medicine)

  • Claire Roesler

    (Emory University School of Medicine)

  • Samantha Rice

    (Emory University School of Medicine)

  • Paul D’Cunha

    (Emory University School of Medicine)

  • Lisa Zhuang

    (Emory University School of Medicine)

  • Julia Slack

    (Emory University School of Medicine)

  • Mason Domke

    (Emory University School of Medicine)

  • Anna Antonova

    (Emory University School of Medicine)

  • Sarah Romanelli

    (Emory University School of Medicine)

  • Shayon Keating

    (Emory University School of Medicine)

  • Gabriela Forero

    (Emory University School of Medicine)

  • Puneet Juneja

    (Emory University School of Medicine)

  • Bo Liang

    (Emory University School of Medicine)

Abstract

The respiratory syncytial virus (RSV) RNA polymerase, constituted of a 250 kDa large (L) protein and tetrameric phosphoprotein (P), catalyzes three distinct enzymatic activities — nucleotide polymerization, cap addition, and cap methylation. How RSV L and P coordinate these activities is poorly understood. Here, we present a 3.67 Å cryo-EM structure of the RSV polymerase (L:P) complex. The structure reveals that the RNA dependent RNA polymerase (RdRp) and capping (Cap) domains of L interact with the oligomerization domain (POD) and C-terminal domain (PCTD) of a tetramer of P. The density of the methyltransferase (MT) domain of L and the N-terminal domain of P (PNTD) is missing. Further analysis and comparison with other RNA polymerases at different stages suggest the structure we obtained is likely to be at an elongation-compatible stage. Together, these data provide enriched insights into the interrelationship, the inhibitors, and the evolutionary implications of the RSV polymerase.

Suggested Citation

  • Dongdong Cao & Yunrong Gao & Claire Roesler & Samantha Rice & Paul D’Cunha & Lisa Zhuang & Julia Slack & Mason Domke & Anna Antonova & Sarah Romanelli & Shayon Keating & Gabriela Forero & Puneet Junej, 2020. "Cryo-EM structure of the respiratory syncytial virus RNA polymerase," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14246-3
    DOI: 10.1038/s41467-019-14246-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14246-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14246-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianhao Li & Mingdong Liu & Zhanxi Gu & Xin Su & Yunhui Liu & Jinzhong Lin & Yu Zhang & Qing-Tao Shen, 2024. "Structures of the mumps virus polymerase complex via cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jin Xie & Mohamed Ouizougun-Oubari & Li Wang & Guanglei Zhai & Daitze Wu & Zhaohu Lin & Manfu Wang & Barbara Ludeke & Xiaodong Yan & Tobias Nilsson & Lu Gao & Xinyi Huang & Rachel Fearns & Shuai Chen, 2024. "Structural basis for dimerization of a paramyxovirus polymerase complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jack D. Whitehead & Hortense Decool & Cédric Leyrat & Loic Carrique & Jenna Fix & Jean-François Eléouët & Marie Galloux & Max Renner, 2023. "Structure of the N-RNA/P interface indicates mode of L/P recruitment to the nucleocapsid of human metapneumovirus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14246-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.