IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15010-8.html
   My bibliography  Save this article

Fermi-arc supercurrent oscillations in Dirac semimetal Josephson junctions

Author

Listed:
  • Cai-Zhen Li

    (Peking University
    Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology)

  • An-Qi Wang

    (Peking University)

  • Chuan Li

    (University of Twente)

  • Wen-Zhuang Zheng

    (Peking University)

  • Alexander Brinkman

    (University of Twente)

  • Da-Peng Yu

    (Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology)

  • Zhi-Min Liao

    (Peking University
    Peking University
    Peking University)

Abstract

One prominent hallmark of topological semimetals is the existence of unusual topological surface states known as Fermi arcs. Nevertheless, the Fermi-arc superconductivity remains elusive. Here, we report the critical current oscillations from surface Fermi arcs in Nb-Dirac semimetal Cd3As2-Nb Josephson junctions. The supercurrent from bulk states are suppressed under an in-plane magnetic field ~0.1 T, while the supercurrent from the topological surface states survives up to 0.5 T. Contrary to the minimum normal-state conductance, the Fermi-arc carried supercurrent shows a maximum critical value near the Dirac point, which is consistent with the fact that the Fermi arcs have maximum density of state at the Dirac point. Moreover, the critical current exhibits periodic oscillations with a parallel magnetic field, which is well understood by considering the in-plane orbital effect from the surface states. Our results suggest the Dirac semimetal combined with superconductivity should be promising for topological quantum devices.

Suggested Citation

  • Cai-Zhen Li & An-Qi Wang & Chuan Li & Wen-Zhuang Zheng & Alexander Brinkman & Da-Peng Yu & Zhi-Min Liao, 2020. "Fermi-arc supercurrent oscillations in Dirac semimetal Josephson junctions," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15010-8
    DOI: 10.1038/s41467-020-15010-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15010-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15010-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Le & Ruihan Zhang & Changcun Li & Ruiyang Jiang & Haohao Sheng & Linfeng Tu & Xuewei Cao & Zhaozheng Lyu & Jie Shen & Guangtong Liu & Fucai Liu & Zhijun Wang & Li Lu & Fanming Qu, 2024. "Magnetic field filtering of the boundary supercurrent in unconventional metal NiTe2-based Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15010-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.