IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47016-x.html
   My bibliography  Save this article

Pheromone-based communication influences the production of somatic extracellular vesicles in C. elegans

Author

Listed:
  • Agata Szczepańska

    (Polish Academy of Sciences)

  • Katarzyna Olek

    (International Institute of Molecular and Cell Biology in Warsaw)

  • Klaudia Kołodziejska

    (Polish Academy of Sciences)

  • Jingfang Yu

    (Cornell University)

  • Abdulrahman Tudu Ibrahim

    (Polish Academy of Sciences
    Warsaw University of Technology)

  • Laura Adamkiewicz

    (Polish Academy of Sciences)

  • Frank C. Schroeder

    (Cornell University)

  • Wojciech Pokrzywa

    (International Institute of Molecular and Cell Biology in Warsaw)

  • Michał Turek

    (Polish Academy of Sciences)

Abstract

Extracellular vesicles (EVs) are integral to numerous biological processes, yet it is unclear how environmental factors or interactions among individuals within a population affect EV-regulated systems. In Caenorhabditis elegans, the evolutionarily conserved large EVs, known as exophers, are part of a maternal somatic tissue resource management system. Consequently, the offspring of individuals exhibiting active exopher biogenesis (exophergenesis) develop faster. Our research focuses on unraveling the complex inter-tissue and social dynamics that govern exophergenesis. We found that ascr#10, the primary male pheromone, enhances exopher production in hermaphrodites, mediated by the G-protein-coupled receptor STR-173 in ASK sensory neurons. In contrast, pheromone produced by other hermaphrodites, ascr#3, diminishes exophergenesis within the population. This process is regulated via the neuropeptides FLP-8 and FLP-21, which originate from the URX and AQR/PQR/URX neurons, respectively. Our results reveal a regulatory network that controls the production of somatic EV by the nervous system in response to social signals.

Suggested Citation

  • Agata Szczepańska & Katarzyna Olek & Klaudia Kołodziejska & Jingfang Yu & Abdulrahman Tudu Ibrahim & Laura Adamkiewicz & Frank C. Schroeder & Wojciech Pokrzywa & Michał Turek, 2024. "Pheromone-based communication influences the production of somatic extracellular vesicles in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47016-x
    DOI: 10.1038/s41467-024-47016-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47016-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47016-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jagan Srinivasan & Fatma Kaplan & Ramadan Ajredini & Cherian Zachariah & Hans T. Alborn & Peter E. A. Teal & Rabia U. Malik & Arthur S. Edison & Paul W. Sternberg & Frank C. Schroeder, 2008. "A blend of small molecules regulates both mating and development in Caenorhabditis elegans," Nature, Nature, vol. 454(7208), pages 1115-1118, August.
    2. Ilija Melentijevic & Marton L. Toth & Meghan L. Arnold & Ryan J. Guasp & Girish Harinath & Ken C. Nguyen & Daniel Taub & J. Alex Parker & Christian Neri & Christopher V. Gabel & David H. Hall & Monica, 2017. "C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress," Nature, Nature, vol. 542(7641), pages 367-371, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Qiang Zhu & Matthew E. Combs & Juan Liu & Xue Bai & Wenbo B. Wang & Laura E. Herring & Jiandong Liu & Jason W. Locasale & Dawn E. Bowles & Ryan T. Gross & Michelle Mendiola Pla & Christopher P. Mack &, 2023. "GRAF1 integrates PINK1-Parkin signaling and actin dynamics to mediate cardiac mitochondrial homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Meghan Lee Arnold & Jason Cooper & Rebecca Androwski & Sohil Ardeshna & Ilija Melentijevic & Joelle Smart & Ryan J. Guasp & Ken C. Q. Nguyen & Ge Bai & David H. Hall & Barth D. Grant & Monica Driscoll, 2023. "Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Wang Yuan & Yi M. Weaver & Svetlana Earnest & Clinton A. Taylor & Melanie H. Cobb & Benjamin P. Weaver, 2023. "Modulating p38 MAPK signaling by proteostasis mechanisms supports tissue integrity during growth and aging," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Lasse Dissing-Olesen & Alec J. Walker & Qian Feng & Helena J. Barr & Alicia C. Walker & Lili Xie & Daniel K. Wilton & Indrani Das & Larry I. Benowitz & Beth Stevens, 2023. "FEAST: A flow cytometry-based toolkit for interrogating microglial engulfment of synaptic and myelin proteins," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Hayden Weng Siong Tan & Guang Lu & Han Dong & Yik-Lam Cho & Auginia Natalia & Liming Wang & Charlene Chan & Dennis Kappei & Reshma Taneja & Shuo-Chien Ling & Huilin Shao & Shih-Yin Tsai & Wen-Xing Din, 2022. "A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Wenjing Liang & Shakti Sagar & Rishith Ravindran & Rita H. Najor & Justin M. Quiles & Liguo Chi & Rachel Y. Diao & Benjamin P. Woodall & Leonardo J. Leon & Erika Zumaya & Jason Duran & David M. Cauvi , 2023. "Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47016-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.