IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46891-8.html
   My bibliography  Save this article

Realization of sextuple polarization states and interstate switching in antiferroelectric CuInP2S6

Author

Listed:
  • Tao Li

    (Xi’an Jiaotong University)

  • Yongyi Wu

    (Xi’an Jiaotong University)

  • Guoliang Yu

    (Hunan Normal University)

  • Shengxian Li

    (Hunan Normal University)

  • Yifeng Ren

    (Nanjing University)

  • Yadong Liu

    (Xi’an Jiaotong University)

  • Jiarui Liu

    (Xi’an Jiaotong University)

  • Hao Feng

    (Xi’an Jiaotong University)

  • Yu Deng

    (Nanjing University)

  • Mingxing Chen

    (Hunan Normal University
    Central South University)

  • Zhenyu Zhang

    (University of Science and Technology of China)

  • Tai Min

    (Xi’an Jiaotong University)

Abstract

Realization of higher-order multistates with mutual interstate switching in ferroelectric materials is a perpetual drive for high-density storage devices and beyond-Moore technologies. Here we demonstrate experimentally that antiferroelectric van der Waals CuInP2S6 films can be controllably stabilized into double, quadruple, and sextuple polarization states, and a system harboring polarization order of six is also reversibly tunable into order of four or two. Furthermore, for a given polarization order, mutual interstate switching can be achieved via moderate electric field modulation. First-principles studies of CuInP2S6 multilayers help to reveal that the double, quadruple, and sextuple states are attributable to the existence of respective single, double, and triple ferroelectric domains with antiferroelectric interdomain coupling and Cu ion migration. These findings offer appealing platforms for developing multistate ferroelectric devices, while the underlining mechanism is transformative to other non-volatile material systems.

Suggested Citation

  • Tao Li & Yongyi Wu & Guoliang Yu & Shengxian Li & Yifeng Ren & Yadong Liu & Jiarui Liu & Hao Feng & Yu Deng & Mingxing Chen & Zhenyu Zhang & Tai Min, 2024. "Realization of sextuple polarization states and interstate switching in antiferroelectric CuInP2S6," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46891-8
    DOI: 10.1038/s41467-024-46891-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46891-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46891-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Meng & Yaze Wu & Renji Bian & Er Pan & Biao Dong & Xiaoxu Zhao & Jiangang Chen & Lishu Wu & Yuqi Sun & Qundong Fu & Qing Liu & Dong Shi & Qi Zhang & Yong-Wei Zhang & Zheng Liu & Fucai Liu, 2022. "Sliding induced multiple polarization states in two-dimensional ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sören Boyn & Julie Grollier & Gwendal Lecerf & Bin Xu & Nicolas Locatelli & Stéphane Fusil & Stéphanie Girod & Cécile Carrétéro & Karin Garcia & Stéphane Xavier & Jean Tomas & Laurent Bellaiche & Manu, 2017. "Learning through ferroelectric domain dynamics in solid-state synapses," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Zhen Luo & Zijian Wang & Zeyu Guan & Chao Ma & Letian Zhao & Chuanchuan Liu & Haoyang Sun & He Wang & Yue Lin & Xi Jin & Yuewei Yin & Xiaoguang Li, 2022. "High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Zaiyao Fei & Wenjin Zhao & Tauno A. Palomaki & Bosong Sun & Moira K. Miller & Zhiying Zhao & Jiaqiang Yan & Xiaodong Xu & David H. Cobden, 2018. "Ferroelectric switching of a two-dimensional metal," Nature, Nature, vol. 560(7718), pages 336-339, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenhui Li & Xuanlin Zhang & Jia Yang & Song Zhou & Chuangye Song & Peng Cheng & Yi-Qi Zhang & Baojie Feng & Zhenxing Wang & Yunhao Lu & Kehui Wu & Lan Chen, 2023. "Emergence of ferroelectricity in a nonferroelectric monolayer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Ming Lv & Jiulong Wang & Ming Tian & Neng Wan & Wenyi Tong & Chungang Duan & Jiamin Xue, 2024. "Multiresistance states in ferro- and antiferroelectric trilayer boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Fengrui Sui & Min Jin & Yuanyuan Zhang & Ruijuan Qi & Yu-Ning Wu & Rong Huang & Fangyu Yue & Junhao Chu, 2023. "Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. James G. McHugh & Xue Li & Isaac Soltero & Vladimir I. Fal’ko, 2024. "Two-dimensional electrons at mirror and twistronic twin boundaries in van der Waals ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Teng Ma & Hao Chen & Kunihiro Yananose & Xin Zhou & Lin Wang & Runlai Li & Ziyu Zhu & Zhenyue Wu & Qing-Hua Xu & Jaejun Yu & Cheng Wei Qiu & Alessandro Stroppa & Kian Ping Loh, 2022. "Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Jinlei Zhang & Jiayong Zhang & Yaping Qi & Shuainan Gong & Hang Xu & Zhenqi Liu & Ran Zhang & Mohammad A. Sadi & Demid Sychev & Run Zhao & Hongbin Yang & Zhenping Wu & Dapeng Cui & Lin Wang & Chunlan , 2024. "Room-temperature ferroelectric, piezoelectric and resistive switching behaviors of single-element Te nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Fei Xue & Xin He & Yinchang Ma & Dongxing Zheng & Chenhui Zhang & Lain-Jong Li & Jr-Hau He & Bin Yu & Xixiang Zhang, 2021. "Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Dongyang Yang & Jing Liang & Jingda Wu & Yunhuan Xiao & Jerry I. Dadap & Kenji Watanabe & Takashi Taniguchi & Ziliang Ye, 2024. "Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Heng Liu & Qinglin Lai & Jun Fu & Shijie Zhang & Zhaoming Fu & Hualing Zeng, 2024. "Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Weijia Liu & Zhijian Du & Zhongyi Duan & La Li & Guozhen Shen, 2024. "Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Rengjian Yu & Lihua He & Changsong Gao & Xianghong Zhang & Enlong Li & Tailiang Guo & Wenwu Li & Huipeng Chen, 2022. "Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Guangdi Feng & Qiuxiang Zhu & Xuefeng Liu & Luqiu Chen & Xiaoming Zhao & Jianquan Liu & Shaobing Xiong & Kexiang Shan & Zhenzhong Yang & Qinye Bao & Fangyu Yue & Hui Peng & Rong Huang & Xiaodong Tang , 2024. "A ferroelectric fin diode for robust non-volatile memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46891-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.