IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46883-8.html
   My bibliography  Save this article

An entanglement association polymer electrolyte for Li-metal batteries

Author

Listed:
  • Hangchao Wang

    (Peking University)

  • Yali Yang

    (Peking University)

  • Chuan Gao

    (Peking University)

  • Tao Chen

    (Peking University)

  • Jin Song

    (Peking University)

  • Yuxuan Zuo

    (Peking University)

  • Qiu Fang

    (Peking University)

  • Tonghuan Yang

    (Peking University)

  • Wukun Xiao

    (Peking University)

  • Kun Zhang

    (Peking University)

  • Xuefeng Wang

    (Peking University
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dingguo Xia

    (Peking University
    Peking University)

Abstract

To improve the interface stability between Li-rich Mn-based oxide cathodes and electrolytes, it is necessary to develop new polymer electrolytes. Here, we report an entanglement association polymer electrolyte (PVFH-PVCA) based on a poly (vinylidene fluoride-co-hexafluoropropylene) (PVFH) matrix and a copolymer stabilizer (PVCA) prepared from acrylonitrile, maleic anhydride, and vinylene carbonate. The entangled structure of the PVFH-PVCA electrolyte imparts excellent mechanical properties and eliminates the stress arising from dendrite growth during cycling and forms a stable interface layer, enabling Li//Li symmetric cells to cycle steadily for more than 4500 h at 8 mA cm−2. The PVCA acts as a stabilizer to promote the formation of an electrochemically robust cathode–electrolyte interphase. It delivers a high specific capacity and excellent cycling stability with 84.7% capacity retention after 400 cycles. Li1.2Mn0.56Ni0.16Co0.08O2/PVFH-PVCA/Li full cell achieved 125 cycles at 1 C (4.8 V cut-off) with a stable discharge capacity of ~2.5 mAh cm−2.

Suggested Citation

  • Hangchao Wang & Yali Yang & Chuan Gao & Tao Chen & Jin Song & Yuxuan Zuo & Qiu Fang & Tonghuan Yang & Wukun Xiao & Kun Zhang & Xuefeng Wang & Dingguo Xia, 2024. "An entanglement association polymer electrolyte for Li-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46883-8
    DOI: 10.1038/s41467-024-46883-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46883-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46883-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qing Zhao & Xiaotun Liu & Sanjuna Stalin & Kasim Khan & Lynden A. Archer, 2019. "Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries," Nature Energy, Nature, vol. 4(5), pages 365-373, May.
    2. Danfeng Zhang & Ming Liu & Jiabin Ma & Ke Yang & Zhen Chen & Kaikai Li & Chen Zhang & Yinping Wei & Min Zhou & Peng Wang & Yuanbiao He & Wei Lv & Quan-Hong Yang & Feiyu Kang & Yan-Bing He, 2022. "Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Hongliu Dai & Xingxing Gu & Jing Dong & Chao Wang & Chao Lai & Shuhui Sun, 2020. "Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Yun Su & Xiaohui Rong & Ang Gao & Yuan Liu & Jianwei Li & Minglei Mao & Xingguo Qi & Guoliang Chai & Qinghua Zhang & Liumin Suo & Lin Gu & Hong Li & Xuejie Huang & Liquan Chen & Binyuan Liu & Yong-She, 2022. "Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Linglan Fu & Lan Li & Qingyuan Bian & Bin Xue & Jing Jin & Jiayu Li & Yi Cao & Qing Jiang & Hongbin Li, 2023. "Cartilage-like protein hydrogels engineered via entanglement," Nature, Nature, vol. 618(7966), pages 740-747, June.
    6. Junru Wu & Xianshu Wang & Qi Liu & Shuwei Wang & Dong Zhou & Feiyu Kang & Devaraj Shanmukaraj & Michel Armand & Teofilo Rojo & Baohua Li & Guoxiu Wang, 2021. "A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Lingfei Tang & Bowen Chen & Zhonghan Zhang & Changqi Ma & Junchao Chen & Yage Huang & Fengrui Zhang & Qingyu Dong & Guoyong Xue & Daiqian Chen & Chenji Hu & Shuzhou Li & Zheng Liu & Yanbin Shen & Qi C, 2023. "Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Matt D. G. Hughes & Sophie Cussons & Benjamin S. Hanson & Kalila R. Cook & Tímea Feller & Najet Mahmoudi & Daniel L. Baker & Robert Ariëns & David A. Head & David J. Brockwell & Lorna Dougan, 2023. "Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Guangli Zheng & Tong Yan & Yifeng Hong & Xiaona Zhang & Jianying Wu & Zhenxing Liang & Zhiming Cui & Li Du & Huiyu Song, 2023. "A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Yingchun Yan & Zheng Liu & Ting Wan & Weining Li & Zhipeng Qiu & Chunlei Chi & Chao Huangfu & Guanwen Wang & Bin Qi & Youguo Yan & Tong Wei & Zhuangjun Fan, 2023. "Bioinspired design of Na-ion conduction channels in covalent organic frameworks for quasi-solid-state sodium batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Kwiyong Kim & Darien Raymond & Riccardo Candeago & Xiao Su, 2021. "Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Yun Su & Xiaohui Rong & Ang Gao & Yuan Liu & Jianwei Li & Minglei Mao & Xingguo Qi & Guoliang Chai & Qinghua Zhang & Liumin Suo & Lin Gu & Hong Li & Xuejie Huang & Liquan Chen & Binyuan Liu & Yong-She, 2022. "Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Xiao Zhan & Miao Li & Xiaolin Zhao & Yaning Wang & Sha Li & Weiwei Wang & Jiande Lin & Zi-Ang Nan & Jiawei Yan & Zhefei Sun & Haodong Liu & Fei Wang & Jiayu Wan & Jianjun Liu & Qiaobao Zhang & Li Zhan, 2024. "Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Qing Zhao & Yue Deng & Nyalaliska W. Utomo & Jingxu Zheng & Prayag Biswal & Jiefu Yin & Lynden A. Archer, 2021. "On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Bin Zhao & Qi Wang & Boheng Yuan & Yafei Lu & Xiaogang Han, 2021. "An All-Solid-State Lithium Metal Battery Based on Electrodes-Compatible Plastic Crystal Electrolyte," Energies, MDPI, vol. 14(21), pages 1-9, October.
    12. Ziyu Song & Fangfang Chen & Maria Martinez-Ibañez & Wenfang Feng & Maria Forsyth & Zhibin Zhou & Michel Armand & Heng Zhang, 2023. "A reflection on polymer electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Yao Wang & Shuyu Dong & Yifu Gao & Pui-Kit Lee & Yao Tian & Yuefeng Meng & Xia Hu & Xin Zhao & Baohua Li & Dong Zhou & Feiyu Kang, 2024. "Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Cheng-Dong Fang & Ying Huang & Yi-Fan Sun & Peng-Fei Sun & Ke Li & Shu-Yang Yao & Min-Yi Zhang & Wei-Hui Fang & Jia-Jia Chen, 2024. "Revealing and reconstructing the 3D Li-ion transportation network for superionic poly(ethylene) oxide conductor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Kai Li & Jifeng Wang & Yuanyuan Song & Ying Wang, 2023. "Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Feifei Wang & Jipeng Zhang & Haotian Lu & Hanbing Zhu & Zihui Chen & Lu Wang & Jinyang Yu & Conghui You & Wenhao Li & Jianwei Song & Zhe Weng & Chunpeng Yang & Quan-Hong Yang, 2023. "Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Fei Pei & Lin Wu & Yi Zhang & Yaqi Liao & Qi Kang & Yan Han & Huangwei Zhang & Yue Shen & Henghui Xu & Zhen Li & Yunhui Huang, 2024. "Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Davood Sabaghi & Zhiyong Wang & Preeti Bhauriyal & Qiongqiong Lu & Ahiud Morag & Daria Mikhailovia & Payam Hashemi & Dongqi Li & Christof Neumann & Zhongquan Liao & Anna Maria Dominic & Ali Shaygan Ni, 2023. "Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Murukadas, Deepu & Cho, Yeonhwa & Lee, Woongki & Lee, Sooyong & Kim, Hwajeong & Kim, Youngkyoo, 2024. "Lithium supercapacitors with environmentally-friend water-processable solid-state hybrid electrolytes of zinc oxide/polymer/lithium hydroxide," Energy, Elsevier, vol. 290(C).
    20. Jiaxuan Wang & Feng Hao, 2023. "Experimental Investigations on the Chemo-Mechanical Coupling in Solid-State Batteries and Electrode Materials," Energies, MDPI, vol. 16(3), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46883-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.