IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40921-7.html
   My bibliography  Save this article

Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks

Author

Listed:
  • Matt D. G. Hughes

    (University of Leeds)

  • Sophie Cussons

    (University of Leeds
    University of Leeds)

  • Benjamin S. Hanson

    (University of Leeds)

  • Kalila R. Cook

    (University of Leeds)

  • Tímea Feller

    (University of Leeds)

  • Najet Mahmoudi

    (STFC Rutherford Appleton Laboratory)

  • Daniel L. Baker

    (University of Leeds)

  • Robert Ariëns

    (University of Leeds)

  • David A. Head

    (University of Leeds)

  • David J. Brockwell

    (University of Leeds
    University of Leeds)

  • Lorna Dougan

    (University of Leeds
    University of Leeds)

Abstract

Fibrous networks constructed from high aspect ratio protein building blocks are ubiquitous in nature. Despite this ubiquity, the functional advantage of such building blocks over globular proteins is not understood. To answer this question, we engineered hydrogel network building blocks with varying numbers of protein L domains to control the aspect ratio. The mechanical and structural properties of photochemically crosslinked protein L networks were then characterised using shear rheology and small angle neutron scattering. We show that aspect ratio is a crucial property that defines network architecture and mechanics, by shifting the formation from translationally diffusion dominated to rotationally diffusion dominated. Additionally, we demonstrate that a similar transition is observed in the model living system: fibrin blood clot networks. The functional advantages of this transition are increased mechanical strength and the rapid assembly of homogenous networks above a critical protein concentration, crucial for in vivo biological processes such as blood clotting. In addition, manipulating aspect ratio also provides a parameter in the design of future bio-mimetic and bio-inspired materials.

Suggested Citation

  • Matt D. G. Hughes & Sophie Cussons & Benjamin S. Hanson & Kalila R. Cook & Tímea Feller & Najet Mahmoudi & Daniel L. Baker & Robert Ariëns & David A. Head & David J. Brockwell & Lorna Dougan, 2023. "Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40921-7
    DOI: 10.1038/s41467-023-40921-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40921-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40921-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linglan Fu & Lan Li & Qingyuan Bian & Bin Xue & Jing Jin & Jiayu Li & Yi Cao & Qing Jiang & Hongbin Li, 2023. "Cartilage-like protein hydrogels engineered via entanglement," Nature, Nature, vol. 618(7966), pages 740-747, June.
    2. Daniel A. Fletcher & R. Dyche Mullins, 2010. "Cell mechanics and the cytoskeleton," Nature, Nature, vol. 463(7280), pages 485-492, January.
    3. Qingyuan Bian & Linglan Fu & Hongbin Li, 2022. "Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hangchao Wang & Yali Yang & Chuan Gao & Tao Chen & Jin Song & Yuxuan Zuo & Qiu Fang & Tonghuan Yang & Wukun Xiao & Kun Zhang & Xuefeng Wang & Dingguo Xia, 2024. "An entanglement association polymer electrolyte for Li-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Gábor Pete & Ádám Timár & Sigurdur Örn Stefánsson & Ivan Bonamassa & Márton Pósfai, 2024. "Physical networks as network-of-networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Chao Jiang & Hong-Yu Luo & Xinpeng Xu & Shuo-Xing Dou & Wei Li & Dongshi Guan & Fangfu Ye & Xiaosong Chen & Ming Guo & Peng-Ye Wang & Hui Li, 2023. "Switch of cell migration modes orchestrated by changes of three-dimensional lamellipodium structure and intracellular diffusion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Daniela Sorrentino & Simona Ranallo & Francesco Ricci & Elisa Franco, 2024. "Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Muqing Cao & Xiaoxiao Zou & Chaoyi Li & Zaisheng Lin & Ni Wang & Zhongju Zou & Youqiong Ye & Joachim Seemann & Beth Levine & Zaiming Tang & Qing Zhong, 2023. "An actin filament branching surveillance system regulates cell cycle progression, cytokinesis and primary ciliogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Jiu-Tao Hang & Yu Kang & Guang-Kui Xu & Huajian Gao, 2021. "A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Gaurav Luthria & Ran Li & Stephanie Wang & Mark Prytyskach & Rainer H. Kohler & Douglas A. Lauffenburger & Timothy J. Mitchison & Ralph Weissleder & Miles A. Miller, 2020. "In vivo microscopy reveals macrophage polarization locally promotes coherent microtubule dynamics in migrating cancer cells," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    9. Yuhang Zhang & Jingyi Du & Xian Liu & Fei Shang & Yunxin Deng & Jiaqing Ye & Yukai Wang & Jie Yan & Hu Chen & Miao Yu & Shimin Le, 2024. "Multi-domain interaction mediated strength-building in human α-actinin dimers unveiled by direct single-molecule quantification," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Suchet Nanda & Abram Calderon & Arya Sachan & Thanh-Thuy Duong & Johannes Koch & Xiaoyi Xin & Djamschid Solouk-Stahlberg & Yao-Wen Wu & Perihan Nalbant & Leif Dehmelt, 2023. "Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Venkat R. Chirasani & Mohammad Ashhar I. Khan & Juilee N. Malavade & Nikolay V. Dokholyan & Brenton D. Hoffman & Sharon L. Campbell, 2023. "Molecular basis and cellular functions of vinculin-actin directional catch bonding," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Kuan Zhang & Yu Zhou & Junsheng Zhang & Qing Liu & Christina Hanenberg & Ahmed Mourran & Xin Wang & Xiang Gao & Yi Cao & Andreas Herrmann & Lifei Zheng, 2024. "Shape morphing of hydrogels by harnessing enzyme enabled mechanoresponse," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Jindal, Akriti & Gupta, Arvind Kumar, 2021. "Effect of local dissociation on symmetry breaking in exclusion model constituted by bridge lane and input-output TASEPs," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Kexin Guo & Xuehan Yang & Chao Zhou & Chuang Li, 2024. "Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Jing He & Lin Qian & Zhuang Li & Yanpeng Wang & Kai Liu & Haibin Wei & Yuan Sun & Jiaoyan He & Ke Yao & Jiahao Weng & Xuanhan Hu & Dahong Zhang & Yong He, 2024. "A tissue bandage for pelvic ganglia injury," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Reena Kumari & Katharina Ven & Megan Chastney & Shrikant B. Kokate & Johan Peränen & Jesse Aaron & Konstantin Kogan & Leonardo Almeida-Souza & Elena Kremneva & Renaud Poincloux & Teng-Leong Chew & Pet, 2024. "Focal adhesions contain three specialized actin nanoscale layers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Alves Ribeiro, Marcus V. & Jurjiu, Aurel & Galiceanu, Mircea, 2022. "Dynamics of semiflexible generalized scale-free polymer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    18. Chrystian Junqueira Alves & Rafael Dariolli & Jonathan Haydak & Sangjo Kang & Theodore Hannah & Robert J. Wiener & Stefanie DeFronzo & Rut Tejero & Gabriele L. Gusella & Aarthi Ramakrishnan & Rodrigo , 2021. "Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion," Nature Communications, Nature, vol. 12(1), pages 1-23, December.
    19. Antoine Vian & Marie Pochitaloff & Shuo-Ting Yen & Sangwoo Kim & Jennifer Pollock & Yucen Liu & Ellen M. Sletten & Otger Campàs, 2023. "In situ quantification of osmotic pressure within living embryonic tissues," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Mariafrancesca Cascione & Valeria De Matteis & Rosaria Rinaldi, 2019. "Cytomechanical Alterations Induced by Inorganic NPs," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 14(4), pages 1-2, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40921-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.