IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46861-0.html
   My bibliography  Save this article

Dynamics of accessible chromatin regions and subgenome dominance in octoploid strawberry

Author

Listed:
  • Chao Fang

    (Michigan State University)

  • Ning Jiang

    (Michigan State University
    Michigan State University AgBioResearch
    Michigan State University)

  • Scott J. Teresi

    (Michigan State University
    Michigan State University)

  • Adrian E. Platts

    (Michigan State University)

  • Gaurav Agarwal

    (Michigan State University)

  • Chad Niederhuth

    (Michigan State University
    Michigan State University AgBioResearch)

  • Patrick P. Edger

    (Michigan State University
    Michigan State University AgBioResearch
    Michigan State University)

  • Jiming Jiang

    (Michigan State University
    Michigan State University
    Michigan State University AgBioResearch)

Abstract

Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.

Suggested Citation

  • Chao Fang & Ning Jiang & Scott J. Teresi & Adrian E. Platts & Gaurav Agarwal & Chad Niederhuth & Patrick P. Edger & Jiming Jiang, 2024. "Dynamics of accessible chromatin regions and subgenome dominance in octoploid strawberry," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46861-0
    DOI: 10.1038/s41467-024-46861-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46861-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46861-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam M. Session & Daniel S. Rokhsar, 2023. "Transposon signatures of allopolyploid genome evolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Yuyun Zhang & Zijuan Li & Jinyi Liu & Yu’e Zhang & Luhuan Ye & Yuan Peng & Haoyu Wang & Huishan Diao & Yu Ma & Meiyue Wang & Yilin Xie & Tengfei Tang & Yili Zhuang & Wan Teng & Yiping Tong & Wenli Zha, 2022. "Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Yuannian Jiao & Norman J. Wickett & Saravanaraj Ayyampalayam & André S. Chanderbali & Lena Landherr & Paula E. Ralph & Lynn P. Tomsho & Yi Hu & Haiying Liang & Pamela S. Soltis & Douglas E. Soltis & S, 2011. "Ancestral polyploidy in seed plants and angiosperms," Nature, Nature, vol. 473(7345), pages 97-100, May.
    4. Weifeng Xu & Qian Zhang & Wei Yuan & Feiyun Xu & Mehtab Muhammad Aslam & Rui Miao & Ying Li & Qianwen Wang & Xing Li & Xin Zhang & Kang Zhang & Tianyu Xia & Feng Cheng, 2020. "The genome evolution and low-phosphorus adaptation in white lupin," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zijuan Li & Yuyun Zhang & Ci-Hang Ding & Yan Chen & Haoyu Wang & Jinyu Zhang & Songbei Ying & Meiyue Wang & Rongzhi Zhang & Jinyi Liu & Yilin Xie & Tengfei Tang & Huishan Diao & Luhuan Ye & Yili Zhuan, 2023. "LHP1-mediated epigenetic buffering of subgenome diversity and defense responses confers genome plasticity and adaptability in allopolyploid wheat," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Ivelin Iliev Rizov, 2016. "European Coexistence Bureau (ECoB) - Best Practice Document for coexistence of genetically modified cotton with conventional and organic farming," JRC Research Reports JRC101485, Joint Research Centre.
    3. Haomiao Yu & Yuan Yuan & Sijiao Wang & Guoming Wu & Haishen Xu & Jianglan Wei & Le Ju & Yulin Huang & Hui Chen, 2021. "Interspecies Evolution and Networks Investigation of the Auxin Response Protein (AUX/IAA) Family Reveals the Adaptation Mechanisms of Halophytes Crops in Nitrogen Starvation Agroecological Environment," Agriculture, MDPI, vol. 11(8), pages 1-23, August.
    4. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Yilin Xie & Songbei Ying & Zijuan Li & Yu’e Zhang & Jiafu Zhu & Jinyu Zhang & Meiyue Wang & Huishan Diao & Haoyu Wang & Yuyun Zhang & Luhuan Ye & Yili Zhuang & Fei Zhao & Wan Teng & Wenli Zhang & Yipi, 2023. "Transposable element-initiated enhancer-like elements generate the subgenome-biased spike specificity of polyploid wheat," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    7. Andre S. Chanderbali & Lingling Jin & Qiaoji Xu & Yue Zhang & Jingbo Zhang & Shuguang Jian & Emily Carroll & David Sankoff & Victor A. Albert & Dianella G. Howarth & Douglas E. Soltis & Pamela S. Solt, 2022. "Buxus and Tetracentron genomes help resolve eudicot genome history," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Xiaowen Shi & Hua Yang & Chen Chen & Jie Hou & Tieming Ji & Jianlin Cheng & James A. Birchler, 2022. "Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Fei Shen & Shixiao Xu & Qi Shen & Changwei Bi & Martin A. Lysak, 2023. "The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Melisa Olave & Alexander Nater & Andreas F. Kautt & Axel Meyer, 2022. "Early stages of sympatric homoploid hybrid speciation in crater lake cichlid fishes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Jamie McCann & Gerald M Schneeweiss & Tod F Stuessy & Jose L Villaseñor & Hanna Weiss-Schneeweiss, 2016. "The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae)," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-23, September.
    12. Yuyun Zhang & Zijuan Li & Jinyi Liu & Yu’e Zhang & Luhuan Ye & Yuan Peng & Haoyu Wang & Huishan Diao & Yu Ma & Meiyue Wang & Yilin Xie & Tengfei Tang & Yili Zhuang & Wan Teng & Yiping Tong & Wenli Zha, 2022. "Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Xiao Feng & Qipian Chen & Weihong Wu & Jiexin Wang & Guohong Li & Shaohua Xu & Shao Shao & Min Liu & Cairong Zhong & Chung-I Wu & Suhua Shi & Ziwen He, 2024. "Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Kanae Nishii & Frank Wright & Yun-Yu Chen & Michael Möller, 2018. "Tangled history of a multigene family: The evolution of ISOPENTENYLTRANSFERASE genes," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    15. Ping HE & Linguang LI & Lailiang CHENG & Haibo WANG & Yuansheng CHANG, 2018. "Variation in ploidy level and morphological traits in the progeny of the triploid apple variety Jonagold," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 54(3), pages 135-142.
    16. Min-Rui-Xuan Xu & Zhen-Yang Liao & Jordan R. Brock & Kang Du & Guo-Yin Li & Zhi-Qiang Chen & Ying-Hao Wang & Zhong-Nan Gao & Gaurav Agarwal & Kevin H-C Wei & Feng Shao & Shuai Pang & Adrian E. Platts , 2023. "Maternal dominance contributes to subgenome differentiation in allopolyploid fishes," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Fei Shen & Yajuan Qin & Rui Wang & Xin Huang & Ying Wang & Tiangang Gao & Junna He & Yue Zhou & Yuannian Jiao & Jianhua Wei & Lei Li & Xiaozeng Yang, 2023. "Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. G. Yahya & P. Menges & P. S. Amponsah & D. A. Ngandiri & D. Schulz & A. Wallek & N. Kulak & M. Mann & P. Cramer & V. Savage & M. Räschle & Z. Storchova, 2022. "Sublinear scaling of the cellular proteome with ploidy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46861-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.