IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46016-1.html
   My bibliography  Save this article

The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions

Author

Listed:
  • Hasitha C. Weerasinghe

    (Flexible Electronics Laboratory, CSIRO Manufacturing)

  • Nasiruddin Macadam

    (University of Cambridge)

  • Jueng-Eun Kim

    (Flexible Electronics Laboratory, CSIRO Manufacturing
    Monash University)

  • Luke J. Sutherland

    (Flexible Electronics Laboratory, CSIRO Manufacturing
    Monash University)

  • Dechan Angmo

    (Flexible Electronics Laboratory, CSIRO Manufacturing)

  • Leonard W. T. Ng

    (Flexible Electronics Laboratory, CSIRO Manufacturing
    University of Cambridge
    Nanyang Technological University (NTU))

  • Andrew D. Scully

    (Flexible Electronics Laboratory, CSIRO Manufacturing)

  • Fiona Glenn

    (Flexible Electronics Laboratory, CSIRO Manufacturing)

  • Regine Chantler

    (Flexible Electronics Laboratory, CSIRO Manufacturing)

  • Nathan L. Chang

    (University of New South Wales)

  • Mohammad Dehghanimadvar

    (University of New South Wales)

  • Lei Shi

    (University of New South Wales
    Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory)

  • Anita W. Y. Ho-Baillie

    (University of New South Wales
    The University of Sydney)

  • Renate Egan

    (University of New South Wales)

  • Anthony S. R. Chesman

    (Flexible Electronics Laboratory, CSIRO Manufacturing)

  • Mei Gao

    (Flexible Electronics Laboratory, CSIRO Manufacturing)

  • Jacek J. Jasieniak

    (Monash University)

  • Tawfique Hasan

    (University of Cambridge)

  • Doojin Vak

    (Flexible Electronics Laboratory, CSIRO Manufacturing)

Abstract

The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W−1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions.

Suggested Citation

  • Hasitha C. Weerasinghe & Nasiruddin Macadam & Jueng-Eun Kim & Luke J. Sutherland & Dechan Angmo & Leonard W. T. Ng & Andrew D. Scully & Fiona Glenn & Regine Chantler & Nathan L. Chang & Mohammad Dehgh, 2024. "The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46016-1
    DOI: 10.1038/s41467-024-46016-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46016-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46016-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eui Hyuk Jung & Nam Joong Jeon & Eun Young Park & Chan Su Moon & Tae Joo Shin & Tae-Youl Yang & Jun Hong Noh & Jangwon Seo, 2019. "Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)," Nature, Nature, vol. 567(7749), pages 511-515, March.
    2. Byung-wook Park & Nir Kedem & Michael Kulbak & Do Yoon Lee & Woon Seok Yang & Nam Joong Jeon & Jangwon Seo & Geonhwa Kim & Ki Jeong Kim & Tae Joo Shin & Gary Hodes & David Cahen & Sang Il Seok, 2018. "Understanding how excess lead iodide precursor improves halide perovskite solar cell performance," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Matthew O. Reese & Stephen Glynn & Michael D. Kempe & Deborah L. McGott & Matthew S. Dabney & Teresa M. Barnes & Samuel Booth & David Feldman & Nancy M. Haegel, 2018. "Increasing markets and decreasing package weight for high-specific-power photovoltaics," Nature Energy, Nature, vol. 3(11), pages 1002-1012, November.
    4. Yehao Deng & Shuang Xu & Shangshang Chen & Xun Xiao & Jingjing Zhao & Jinsong Huang, 2021. "Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability," Nature Energy, Nature, vol. 6(6), pages 633-641, June.
    5. Young Yun Kim & Tae-Youl Yang & Riikka Suhonen & Antti Kemppainen & Kyeongil Hwang & Nam Joong Jeon & Jangwon Seo, 2020. "Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Dae-Yong Son & Jin-Wook Lee & Yung Ji Choi & In-Hyuk Jang & Seonhee Lee & Pil J. Yoo & Hyunjung Shin & Namyoung Ahn & Mansoo Choi & Dongho Kim & Nam-Gyu Park, 2016. "Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells," Nature Energy, Nature, vol. 1(7), pages 1-8, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hyunho Lee & Hyung‐Jun Song, 2021. "Current status and perspective of colored photovoltaic modules," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    4. Soonil Hong & Jinho Lee, 2022. "Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar Cells," Energies, MDPI, vol. 16(1), pages 1-19, December.
    5. Bo Li & Qi Liu & Jianqiu Gong & Shuai Li & Chunlei Zhang & Danpeng Gao & Zhongwei Chen & Zhen Li & Xin Wu & Dan Zhao & Zexin Yu & Xintong Li & Yan Wang & Haipeng Lu & Xiao Cheng Zeng & Zonglong Zhu, 2024. "Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    8. Young-Su Kim & A-Rong Kim & Sung-Ju Tark, 2022. "Building-Integrated Photovoltaic Modules Using Additive-Manufactured Optical Pattern," Energies, MDPI, vol. 15(4), pages 1-13, February.
    9. Zaheen Uddin & Junhui Ran & Elias Stathatos & Bin Yang, 2023. "Improving Thermal Stability of Perovskite Solar Cells by Thermoplastic Additive Engineering," Energies, MDPI, vol. 16(9), pages 1-12, April.
    10. Kalavala Shivaprakash Srivishnu & Prasutha Rani Markapudi & Senthilarasu Sundaram & Lingamallu Giribabu, 2023. "Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics: Recent Advances," Energies, MDPI, vol. 16(2), pages 1-25, January.
    11. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    12. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    13. MiJoung Kim & MoonHoe Kim & JungSeock Oh & NamHee Kwon & Yoonmook Kang & JungYup Yang, 2019. "Phenyl-C61-Butyric Acid Methyl Ester Hybrid Solution for Efficient CH 3 NH 3 PbI 3 Perovskite Solar Cells," Sustainability, MDPI, vol. 11(14), pages 1-11, July.
    14. Woongchan Lee & Young Jin Yoo & Jinhong Park & Joo Hwan Ko & Yeong Jae Kim & Huiwon Yun & Dong Hoe Kim & Young Min Song & Dae-Hyeong Kim, 2022. "Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    16. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    17. Koosha Nassiri Nazif & Alwin Daus & Jiho Hong & Nayeun Lee & Sam Vaziri & Aravindh Kumar & Frederick Nitta & Michelle E. Chen & Siavash Kananian & Raisul Islam & Kwan-Ho Kim & Jin-Hong Park & Ada S. Y, 2021. "High-specific-power flexible transition metal dichalcogenide solar cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Martin, Blake & Amos, Delaina & Brehob, Ellen & van Hest, Maikel F.A.M. & Druffel, Thad, 2022. "Techno-economic analysis of roll-to-roll production of perovskite modules using radiation thermal processes," Applied Energy, Elsevier, vol. 307(C).
    20. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46016-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.