IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v1y2016i7d10.1038_nenergy.2016.81.html
   My bibliography  Save this article

Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells

Author

Listed:
  • Dae-Yong Son

    (Sungkyunkwan University)

  • Jin-Wook Lee

    (Sungkyunkwan University)

  • Yung Ji Choi

    (Yonsei University)

  • In-Hyuk Jang

    (Sungkyunkwan University)

  • Seonhee Lee

    (Sungkyunkwan University)

  • Pil J. Yoo

    (School of Chemical Engineering and SKKU Advanced Institute of Nano Technology, Sungkyunkwan University)

  • Hyunjung Shin

    (Sungkyunkwan University)

  • Namyoung Ahn

    (Seoul National University)

  • Mansoo Choi

    (Seoul National University)

  • Dongho Kim

    (Yonsei University)

  • Nam-Gyu Park

    (Sungkyunkwan University)

Abstract

Perovskite solar cells have attracted significant research efforts due to their remarkable performance, with certified power conversion efficiency now reaching 22%. Solution-processed perovskite thin films are polycrystalline, and grain boundaries are thought to be responsible for causing recombination and trapping of charge carriers. Here we report an effective and reproducible way of treating grain boundaries in CH3NH3PbI3 films deposited by means of a Lewis acid–base adduct approach. We show by high-resolution transmission electron microscopy lattice images that adding 6 mol% excess CH3NH3I to the precursor solution resulted in a CH3NH3I layer forming at the grain boundaries. This layer is responsible for suppressing non-radiative recombination and improving hole and electron extraction at the grain boundaries by forming highly ionic-conducting pathways. We report an average power conversion efficiency of 20.1% over 50 cells (best cell at 20.4%) together with significantly reduced current–voltage hysteresis achieved by this grain boundary healing process.

Suggested Citation

  • Dae-Yong Son & Jin-Wook Lee & Yung Ji Choi & In-Hyuk Jang & Seonhee Lee & Pil J. Yoo & Hyunjung Shin & Namyoung Ahn & Mansoo Choi & Dongho Kim & Nam-Gyu Park, 2016. "Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells," Nature Energy, Nature, vol. 1(7), pages 1-8, July.
  • Handle: RePEc:nat:natene:v:1:y:2016:i:7:d:10.1038_nenergy.2016.81
    DOI: 10.1038/nenergy.2016.81
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201681
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2016.81?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haodong Wu & Yuchen Hou & Jungjin Yoon & Abbey Marie Knoepfel & Luyao Zheng & Dong Yang & Ke Wang & Jin Qian & Shashank Priya & Kai Wang, 2024. "Down-selection of biomolecules to assemble “reverse micelle” with perovskites," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    3. Bo Li & Qi Liu & Jianqiu Gong & Shuai Li & Chunlei Zhang & Danpeng Gao & Zhongwei Chen & Zhen Li & Xin Wu & Dan Zhao & Zexin Yu & Xintong Li & Yan Wang & Haipeng Lu & Xiao Cheng Zeng & Zonglong Zhu, 2024. "Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Hasitha C. Weerasinghe & Nasiruddin Macadam & Jueng-Eun Kim & Luke J. Sutherland & Dechan Angmo & Leonard W. T. Ng & Andrew D. Scully & Fiona Glenn & Regine Chantler & Nathan L. Chang & Mohammad Dehgh, 2024. "The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    6. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. MiJoung Kim & MoonHoe Kim & JungSeock Oh & NamHee Kwon & Yoonmook Kang & JungYup Yang, 2019. "Phenyl-C61-Butyric Acid Methyl Ester Hybrid Solution for Efficient CH 3 NH 3 PbI 3 Perovskite Solar Cells," Sustainability, MDPI, vol. 11(14), pages 1-11, July.
    8. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    9. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:1:y:2016:i:7:d:10.1038_nenergy.2016.81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.