IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.16591.html
   My bibliography  Save this paper

Data-Driven Economic Agent-Based Models

Author

Listed:
  • Marco Pangallo
  • R. Maria del Rio-Chanona

Abstract

Economic agent-based models (ABMs) are becoming more and more data-driven, establishing themselves as increasingly valuable tools for economic research and policymaking. We propose to classify the extent to which an ABM is data-driven based on whether agent-level quantities are initialized from real-world micro-data and whether the ABM's dynamics track empirical time series. This paper discusses how making ABMs data-driven helps overcome limitations of traditional ABMs and makes ABMs a stronger alternative to equilibrium models. We review state-of-the-art methods in parameter calibration, initialization, and data assimilation, and then present successful applications that have generated new scientific knowledge and informed policy decisions. This paper serves as a manifesto for data-driven ABMs, introducing a definition and classification and outlining the state of the field, and as a guide for those new to the field.

Suggested Citation

  • Marco Pangallo & R. Maria del Rio-Chanona, 2024. "Data-Driven Economic Agent-Based Models," Papers 2412.16591, arXiv.org.
  • Handle: RePEc:arx:papers:2412.16591
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.16591
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.16591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.