IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45604-5.html
   My bibliography  Save this article

In-situ formatting donor-acceptor polymer with giant dipole moment and ultrafast exciton separation

Author

Listed:
  • Chang Cheng

    (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology)

  • Jiaguo Yu

    (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
    China University of Geosciences)

  • Difa Xu

    (Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University)

  • Lei Wang

    (Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science)

  • Guijie Liang

    (Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science)

  • Liuyang Zhang

    (China University of Geosciences)

  • Mietek Jaroniec

    (Kent State University)

Abstract

Donor-acceptor semiconducting polymers present countless opportunities for application in photocatalysis. Previous studies have showcased their advantages through direct bottom-up methods. Unfortunately, these approaches often involve harsh reaction conditions, overlooking the impact of uncontrolled polymerization degrees on photocatalysis. Besides, the mechanism behind the separation of electron-hole pairs (excitons) in donor-acceptor polymers remains elusive. This study presents a post-synthetic method involving the light-induced transformation of the building blocks of hyper-cross-linked polymers from donor-carbon-donor to donor-carbon-acceptor states, resulting in a polymer with a substantial intramolecular dipole moment. Thus, excitons are efficiently separated in the transformed polymer. The utility of this strategy is exemplified by the enhanced photocatalytic hydrogen peroxide synthesis. Encouragingly, our observations reveal the formation of intramolecular charge transfer states using time-resolved techniques, confirming transient exciton behavior involving separation and relaxation. This light-induced method not only guides the development of highly efficient donor-acceptor polymer photocatalysts but also applies to various fields, including organic solar cells, light-emitting diodes, and sensors.

Suggested Citation

  • Chang Cheng & Jiaguo Yu & Difa Xu & Lei Wang & Guijie Liang & Liuyang Zhang & Mietek Jaroniec, 2024. "In-situ formatting donor-acceptor polymer with giant dipole moment and ultrafast exciton separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45604-5
    DOI: 10.1038/s41467-024-45604-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45604-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45604-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Palas Roy & Ajay Jha & Vineeth B. Yasarapudi & Thulasi Ram & Boregowda Puttaraju & Satish Patil & Jyotishman Dasgupta, 2017. "Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Yunyang Qian & Yulan Han & Xiyuan Zhang & Ge Yang & Guozhen Zhang & Hai-Long Jiang, 2023. "Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shaolei Wang & Min Xu & Tianyou Peng & Chengxin Zhang & Tao Li & Irshad Hussain & Jingyu Wang & Bien Tan, 2019. "Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sijie Wan & Wang Wang & Bei Cheng & Guoqiang Luo & Qiang Shen & Jiaguo Yu & Jianjun Zhang & Shaowen Cao & Lianmeng Zhang, 2024. "A superlattice interface and S-scheme heterojunction for ultrafast charge separation and transfer in photocatalytic H2 evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan-Sheng Xia & Meizhong Tang & Lei Zhang & Jiang Liu & Cheng Jiang & Guang-Kuo Gao & Long-Zhang Dong & Lan-Gui Xie & Ya-Qian Lan, 2022. "Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Sijie Wan & Wang Wang & Bei Cheng & Guoqiang Luo & Qiang Shen & Jiaguo Yu & Jianjun Zhang & Shaowen Cao & Lianmeng Zhang, 2024. "A superlattice interface and S-scheme heterojunction for ultrafast charge separation and transfer in photocatalytic H2 evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Jiahe Zhang & Xiaoning Li & Haijun Hu & Hongwei Huang & Hui Li & Xiaodong Sun & Tianyi Ma, 2024. "Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Mohammad Qorbani & Amr Sabbah & Ying-Ren Lai & Septia Kholimatussadiah & Shaham Quadir & Chih-Yang Huang & Indrajit Shown & Yi-Fan Huang & Michitoshi Hayashi & Kuei-Hsien Chen & Li-Chyong Chen, 2022. "Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Md. Arif Hossen & H. M. Solayman & Kah Hon Leong & Lan Ching Sim & Nurashikin Yaacof & Azrina Abd Aziz & Wu Lihua & Minhaj Uddin Monir, 2022. "A Comprehensive Review on Advances in TiO 2 Nanotube (TNT)-Based Photocatalytic CO 2 Reduction to Value-Added Products," Energies, MDPI, vol. 15(22), pages 1-23, November.
    7. Palas Roy & Wesley R. Browne & Ben L. Feringa & Stephen R. Meech, 2023. "Ultrafast motion in a third generation photomolecular motor," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Shikang Yin & Yiying Zhou & Zhonghuan Liu & Huijie Wang & Xiaoxue Zhao & Zhi Zhu & Yan Yan & Pengwei Huo, 2024. "Elucidating protonation pathways in CO2 photoreduction using the kinetic isotope effect," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Xinjun He & Feng Qi & Xinhui Zou & Yanxun Li & Heng Liu & Xinhui Lu & Kam Sing Wong & Alex K.-Y. Jen & Wallace C. H. Choy, 2024. "Selenium substitution for dielectric constant improvement and hole-transfer acceleration in non-fullerene organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Fang Li & Xiaoyang Yue & Yulong Liao & Liang Qiao & Kangle Lv & Quanjun Xiang, 2023. "Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Anuja Bokare & Folarin Erogbogbo, 2021. "Photocatalysis and Li-Ion Battery Applications of {001} Faceted Anatase TiO 2 -Based Composites," J, MDPI, vol. 4(3), pages 1-31, September.
    12. Yong Liu & Liangchao Yuan & Wenwen Chi & Wang-Kang Han & Jinfang Zhang & Huan Pang & Zhongchang Wang & Zhi-Guo Gu, 2024. "Cairo pentagon tessellated covalent organic frameworks with mcm topology for near-infrared phototherapy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Yajuan Ma & Xiaoxuan Yi & Shaolei Wang & Tao Li & Bien Tan & Chuncheng Chen & Tetsuro Majima & Eric R. Waclawik & Huaiyong Zhu & Jingyu Wang, 2022. "Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Siddhartha Sohoni & Indranil Ghosh & Geoffrey T. Nash & Claire A. Jones & Lawson T. Lloyd & Beiye C. Li & Karen L. Ji & Zitong Wang & Wenbin Lin & Gregory S. Engel, 2024. "Optically accessible long-lived electronic biexcitons at room temperature in strongly coupled H- aggregates," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Chaochen Shao & Xiaohan Yu & Yujin Ji & Jie Xu & Yuchen Yan & Yongpan Hu & Youyong Li & Wei Huang & Yanguang Li, 2024. "Perfluoroalkyl-modified covalent organic frameworks for continuous photocatalytic hydrogen peroxide synthesis and extraction in a biphasic fluid system," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45604-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.