IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29102-0.html
   My bibliography  Save this article

Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2

Author

Listed:
  • Yajuan Ma

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology)

  • Xiaoxuan Yi

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology)

  • Shaolei Wang

    (Key Laboratory of Polyoxometalate Science of Education Institution, Faculty of Chemistry, Northeast Normal University)

  • Tao Li

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology)

  • Bien Tan

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology)

  • Chuncheng Chen

    (Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences)

  • Tetsuro Majima

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology)

  • Eric R. Waclawik

    (School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology)

  • Huaiyong Zhu

    (School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology)

  • Jingyu Wang

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology)

Abstract

Direct photocatalytic CO2 reduction from primary sources, such as flue gas and air, into fuels, is highly desired, but the thermodynamically favored O2 reduction almost completely impedes this process. Herein, we report on the efficacy of a composite photocatalyst prepared by hyper-crosslinking porphyrin-based polymers on hollow TiO2 surface and subsequent coordinating with Pd(II). Such composite exhibits high resistance against O2 inhibition, leading to 12% conversion yield of CO2 from air after 2-h UV-visible light irradiation. In contrast, the CO2 reduction over Pd/TiO2 without the polymer is severely inhibited by the presence of O2 ( ≥ 0.2 %). This study presents a feasible strategy, building Pd(II) sites into CO2-adsorptive polymers on hollow TiO2 surface, for realizing CO2 reduction with H2O in an aerobic environment by the high CO2/O2 adsorption selectivity of polymers and efficient charge separation for CO2 reduction and H2O oxidation on Pd(II) sites and hollow TiO2, respectively.

Suggested Citation

  • Yajuan Ma & Xiaoxuan Yi & Shaolei Wang & Tao Li & Bien Tan & Chuncheng Chen & Tetsuro Majima & Eric R. Waclawik & Huaiyong Zhu & Jingyu Wang, 2022. "Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29102-0
    DOI: 10.1038/s41467-022-29102-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29102-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29102-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaodong Li & Yongfu Sun & Jiaqi Xu & Yanjie Shao & Ju Wu & Xiaoliang Xu & Yang Pan & Huanxin Ju & Junfa Zhu & Yi Xie, 2019. "Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers," Nature Energy, Nature, vol. 4(8), pages 690-699, August.
    2. Kang-Qiang Lu & Yue-Hua Li & Fan Zhang & Ming-Yu Qi & Xue Chen & Zi-Rong Tang & Yoichi M. A. Yamada & Masakazu Anpo & Marco Conte & Yi-Jun Xu, 2020. "Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Zhuo Jiang & Xiaohui Xu & Yanhang Ma & Hae Sung Cho & Deng Ding & Chao Wang & Jie Wu & Peter Oleynikov & Mei Jia & Jun Cheng & Yi Zhou & Osamu Terasaki & Tianyou Peng & Ling Zan & Hexiang Deng, 2020. "Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction," Nature, Nature, vol. 586(7830), pages 549-554, October.
    4. Shaolei Wang & Min Xu & Tianyou Peng & Chengxin Zhang & Tao Li & Irshad Hussain & Jingyu Wang & Bien Tan, 2019. "Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Feiyan Xu & Kai Meng & Bei Cheng & Shengyao Wang & Jingsan Xu & Jiaguo Yu, 2020. "Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Yuan-Sheng Xia & Meizhong Tang & Lei Zhang & Jiang Liu & Cheng Jiang & Guang-Kuo Gao & Long-Zhang Dong & Lan-Gui Xie & Ya-Qian Lan, 2022. "Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Shengyao Wang & Bo Jiang & Joel Henzie & Feiyan Xu & Chengyuan Liu & Xianguang Meng & Sirong Zou & Hui Song & Yang Pan & Hexing Li & Jiaguo Yu & Hao Chen & Jinhua Ye, 2023. "Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Mohammad Qorbani & Amr Sabbah & Ying-Ren Lai & Septia Kholimatussadiah & Shaham Quadir & Chih-Yang Huang & Indrajit Shown & Yi-Fan Huang & Michitoshi Hayashi & Kuei-Hsien Chen & Li-Chyong Chen, 2022. "Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Hui Li & Caikun Cheng & Zhijie Yang & Jingjing Wei, 2022. "Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Shikang Yin & Yiying Zhou & Zhonghuan Liu & Huijie Wang & Xiaoxue Zhao & Zhi Zhu & Yan Yan & Pengwei Huo, 2024. "Elucidating protonation pathways in CO2 photoreduction using the kinetic isotope effect," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Fang Li & Xiaoyang Yue & Yulong Liao & Liang Qiao & Kangle Lv & Quanjun Xiang, 2023. "Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Sanchita Karmakar & Soumitra Barman & Faruk Ahamed Rahimi & Darsi Rambabu & Sukhendu Nath & Tapas Kumar Maji, 2023. "Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Yihua Zhang & Guyang Peng & Shuankui Li & Haijun Wu & Kaidong Chen & Jiandong Wang & Zhihao Zhao & Tu Lyu & Yuan Yu & Chaohua Zhang & Yang Zhang & Chuansheng Ma & Shengwu Guo & Xiangdong Ding & Jun Su, 2024. "Phase interface engineering enables state-of-the-art half-Heusler thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Yixuan Wang & Yang Liu & Lingling Wang & Silambarasan Perumal & Hongdan Wang & Hyun Ko & Chung-Li Dong & Panpan Zhang & Shuaijun Wang & Ta Thi Thuy Nga & Young Dok Kim & Yujing Ji & Shufang Zhao & Ji-, 2024. "Coupling photocatalytic CO2 reduction and CH3OH oxidation for selective dimethoxymethane production," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Yuqi Ren & Yiwei Fu & Naixu Li & Changjun You & Jie Huang & Kai Huang & Zhenkun Sun & Jiancheng Zhou & Yitao Si & Yuanhao Zhu & Wenshuai Chen & Lunbo Duan & Maochang Liu, 2024. "Concentrated solar CO2 reduction in H2O vapour with >1% energy conversion efficiency," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yilong Zhao & Yunxuan Ding & Wenlong Li & Chang Liu & Yingzheng Li & Ziqi Zhao & Yu Shan & Fei Li & Licheng Sun & Fusheng Li, 2023. "Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Jin Ming Wang & Qin Yao Zhu & Jeong Heon Lee & Tae Gyun Woo & Yue Xing Zhang & Woo-Dong Jang & Tae Kyu Kim, 2023. "Asymmetric gradient orbital interaction of hetero-diatomic active sites for promoting C − C coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Yao Chai & Yuehua Kong & Min Lin & Wei Lin & Jinni Shen & Jinlin Long & Rusheng Yuan & Wenxin Dai & Xuxu Wang & Zizhong Zhang, 2023. "Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Chang Cheng & Jiaguo Yu & Difa Xu & Lei Wang & Guijie Liang & Liuyang Zhang & Mietek Jaroniec, 2024. "In-situ formatting donor-acceptor polymer with giant dipole moment and ultrafast exciton separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29102-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.