IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36777-6.html
   My bibliography  Save this article

Ultrafast motion in a third generation photomolecular motor

Author

Listed:
  • Palas Roy

    (University of East Anglia
    Indian Institute of Technology Bhubaneswar)

  • Wesley R. Browne

    (University of Groningen)

  • Ben L. Feringa

    (University of Groningen)

  • Stephen R. Meech

    (University of East Anglia)

Abstract

Controlling molecular translation at the nanoscale is a key objective for development of synthetic molecular machines. Recently developed third generation photochemically driven molecular motors (3GMs), comprising pairs of overcrowded alkenes capable of cooperative unidirectional rotation offer the possibility of converting light energy into translational motion. Further development of 3GMs demands detailed understanding of their excited state dynamics. Here we use time-resolved absorption and emission to track population and coherence dynamics in a 3GM. Femtosecond stimulated Raman reveals real-time structural dynamics as the excited state evolves from a Franck-Condon bright-state through weakly-emissive dark-state to the metastable product, yielding new insight into the reaction coordinate. Solvent polarity modifies the photoconversion efficiency suggesting charge transfer character in the dark-state. The enhanced quantum yield correlates with suppression of a low-frequency flapping motion in the excited state. This detailed characterization facilitates development of 3GMs, suggesting exploitation of medium and substituent effects to modulate motor efficiency.

Suggested Citation

  • Palas Roy & Wesley R. Browne & Ben L. Feringa & Stephen R. Meech, 2023. "Ultrafast motion in a third generation photomolecular motor," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36777-6
    DOI: 10.1038/s41467-023-36777-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36777-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36777-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Palas Roy & Ajay Jha & Vineeth B. Yasarapudi & Thulasi Ram & Boregowda Puttaraju & Satish Patil & Jyotishman Dasgupta, 2017. "Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Tibor Kudernac & Nopporn Ruangsupapichat & Manfred Parschau & Beatriz Maciá & Nathalie Katsonis & Syuzanna R. Harutyunyan & Karl-Heinz Ernst & Ben L. Feringa, 2011. "Electrically driven directional motion of a four-wheeled molecule on a metal surface," Nature, Nature, vol. 479(7372), pages 208-211, November.
    3. Nagatoshi Koumura & Robert W. J. Zijlstra & Richard A. van Delden & Nobuyuki Harada & Ben L. Feringa, 1999. "Light-driven monodirectional molecular rotor," Nature, Nature, vol. 401(6749), pages 152-155, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Wang & Jun Gu & Jia-Yu Zou & Meng-Jie Zhang & Rui Shen & Zhiwen Ye & Ping-Xun Xu & Ying He, 2024. "Photocatalytic Z/E isomerization unlocking the stereodivergent construction of axially chiral alkene frameworks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Chang Cheng & Jiaguo Yu & Difa Xu & Lei Wang & Guijie Liang & Liuyang Zhang & Mietek Jaroniec, 2024. "In-situ formatting donor-acceptor polymer with giant dipole moment and ultrafast exciton separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Sven Vliet & Jinyu Sheng & Charlotte N. Stindt & Ben L. Feringa, 2024. "All-visible-light-driven salicylidene schiff-base-functionalized artificial molecular motors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Umberto Raucci & Hayley Weir & Christoph Bannwarth & David M. Sanchez & Todd J. Martínez, 2022. "Chiral photochemistry of achiral molecules," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Tomoki Nakajima & Shohei Tashiro & Masahiro Ehara & Mitsuhiko Shionoya, 2023. "Selective synthesis of tightly- and loosely-twisted metallomacrocycle isomers towards precise control of helicity inversion motion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Ryojun Toyoda & Nong V. Hoang & Kiana Gholamjani Moghaddam & Stefano Crespi & Daisy R. S. Pooler & Shirin Faraji & Maxim S. Pshenichnikov & Ben L. Feringa, 2022. "Synergistic interplay between photoisomerization and photoluminescence in a light-driven rotary molecular motor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. L. Pfeifer & S. Crespi & P. Meulen & J. Kemmink & R. M. Scheek & M. F. Hilbers & W. J. Buma & B. L. Feringa, 2022. "Controlling forward and backward rotary molecular motion on demand," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Michael Filatov(Gulak) & Marco Paolino & Robin Pierron & Andrea Cappelli & Gianluca Giorgi & Jérémie Léonard & Miquel Huix-Rotllant & Nicolas Ferré & Xuchun Yang & Danil Kaliakin & Alejandro Blanco-Go, 2022. "Towards the engineering of a photon-only two-stroke rotary molecular motor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36777-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.