IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45534-2.html
   My bibliography  Save this article

Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2

Author

Listed:
  • Wanru Liao

    (Central South University)

  • Jun Wang

    (Central South University)

  • Ganghai Ni

    (Central South University)

  • Kang Liu

    (Central South University)

  • Changxu Liu

    (University of Exeter)

  • Shanyong Chen

    (Central South University)

  • Qiyou Wang

    (Central South University)

  • Yingkang Chen

    (Central South University)

  • Tao Luo

    (Central South University)

  • Xiqing Wang

    (Central South University)

  • Yanqiu Wang

    (Central South University)

  • Wenzhang Li

    (Central South University)

  • Ting-Shan Chan

    (National Synchrotron Radiation Research Center)

  • Chao Ma

    (Hunan University)

  • Hongmei Li

    (Central South University)

  • Ying Liang

    (Central South University of Forestry and Technology)

  • Weizhen Liu

    (South China University of Technology)

  • Junwei Fu

    (Central South University)

  • Beidou Xi

    (Chinese Research Academy of Environmental Sciences)

  • Min Liu

    (Central South University)

Abstract

Nitrate (NO3‒) pollution poses significant threats to water quality and global nitrogen cycles. Alkaline electrocatalytic NO3‒ reduction reaction (NO3RR) emerges as an attractive route for enabling NO3‒ removal and sustainable ammonia (NH3) synthesis. However, it suffers from insufficient proton (H+) supply in high pH conditions, restricting NO3‒-to-NH3 activity. Herein, we propose a halogen-mediated H+ feeding strategy to enhance the alkaline NO3RR performance. Our platform achieves near-100% NH3 Faradaic efficiency (pH = 14) with a current density of 2 A cm–2 and enables an over 99% NO3–-to-NH3 conversion efficiency. We also convert NO3‒ to high-purity NH4Cl with near-unity efficiency, suggesting a practical approach to valorizing pollutants into valuable ammonia products. Theoretical simulations and in situ experiments reveal that Cl-coordination endows a shifted d-band center of Pd atoms to construct local H+-abundant environments, through arousing dangling O-H water dissociation and fast *H desorption, for *NO intermediate hydrogenation and finally effective NO3‒-to-NH3 conversion.

Suggested Citation

  • Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45534-2
    DOI: 10.1038/s41467-024-45534-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45534-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45534-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingxing Zhang & Jianling Zhang & Jinbiao Shi & Dongxing Tan & Lifei Liu & Fanyu Zhang & Cheng Lu & Zhuizhui Su & Xiuniang Tan & Xiuyan Cheng & Buxing Han & Lirong Zheng & Jing Zhang, 2019. "Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Zhen-Yu Wu & Mohammadreza Karamad & Xue Yong & Qizheng Huang & David A. Cullen & Peng Zhu & Chuan Xia & Qunfeng Xiao & Mohsen Shakouri & Feng-Yang Chen & Jung Yoon (Timothy) Kim & Yang Xia & Kimberly , 2021. "Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Xuesi Wang & Chaochen Xu & Mietek Jaroniec & Yao Zheng & Shi-Zhang Qiao, 2019. "Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    7. Gao-Feng Chen & Yifei Yuan & Haifeng Jiang & Shi-Yu Ren & Liang-Xin Ding & Lu Ma & Tianpin Wu & Jun Lu & Haihui Wang, 2020. "Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst," Nature Energy, Nature, vol. 5(8), pages 605-613, August.
    8. Giovanni Valenti & Alessandro Boni & Michele Melchionna & Matteo Cargnello & Lucia Nasi & Giovanni Bertoni & Raymond J. Gorte & Massimo Marcaccio & Stefania Rapino & Marcella Bonchio & Paolo Fornasier, 2016. "Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    9. Qiang Gao & Hemanth Somarajan Pillai & Yang Huang & Shikai Liu & Qingmin Mu & Xue Han & Zihao Yan & Hua Zhou & Qian He & Hongliang Xin & Huiyuan Zhu, 2022. "Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Wenchao Ma & Shunji Xie & Xia-Guang Zhang & Fanfei Sun & Jincan Kang & Zheng Jiang & Qinghong Zhang & De-Yin Wu & Ye Wang, 2019. "Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Zhang & Thomas Quast & Bashir Eid & Yen-Ting Chen & Ridha Zerdoumi & Stefan Dieckhöfer & João R. C. Junqueira & Sabine Seisel & Wolfgang Schuhmann, 2024. "In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xinhong Chen & Yumeng Cheng & Bo Zhang & Jia Zhou & Sisi He, 2024. "Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Cong Zhao & Jiazheng Diao & Zhao Liu & Jie Hao & Suhang He & Shaojia Li & Xingxing Li & Guangwu Li & Qiang Fu & Chuancheng Jia & Xuefeng Guo, 2024. "Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Sishuang Tang & Minghao Xie & Saerom Yu & Xun Zhan & Ruilin Wei & Maoyu Wang & Weixin Guan & Bowen Zhang & Yuyang Wang & Hua Zhou & Gengfeng Zheng & Yuanyue Liu & Jamie H. Warner & Guihua Yu, 2024. "General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Shengnan Sun & Chencheng Dai & Peng Zhao & Shibo Xi & Yi Ren & Hui Ru Tan & Poh Chong Lim & Ming Lin & Caozheng Diao & Danwei Zhang & Chao Wu & Anke Yu & Jie Cheng Jackson Koh & Wei Ying Lieu & Debbie, 2024. "Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Wei Liu & Mengyang Xia & Chao Zhao & Ben Chong & Jiahe Chen & He Li & Honghui Ou & Guidong Yang, 2024. "Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Xin Liu & Yan Jiao & Yao Zheng & Mietek Jaroniec & Shi-Zhang Qiao, 2022. "Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Yan Liu & Jie Wei & Zhengwu Yang & Lirong Zheng & Jiankang Zhao & Zhimin Song & Yuhan Zhou & Jiajie Cheng & Junyang Meng & Zhigang Geng & Jie Zeng, 2024. "Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45534-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.