IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08805-x.html
   My bibliography  Save this article

Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces

Author

Listed:
  • Wenchao Ma

    (Xiamen University)

  • Shunji Xie

    (Xiamen University)

  • Xia-Guang Zhang

    (Xiamen University)

  • Fanfei Sun

    (Chinese Academy of Sciences)

  • Jincan Kang

    (Xiamen University)

  • Zheng Jiang

    (Chinese Academy of Sciences)

  • Qinghong Zhang

    (Xiamen University)

  • De-Yin Wu

    (Xiamen University)

  • Ye Wang

    (Xiamen University)

Abstract

Electrocatalytic reduction of CO2 to fuels and chemicals is one of the most attractive routes for CO2 utilization. Current catalysts suffer from low faradaic efficiency of a CO2-reduction product at high current density (or reaction rate). Here, we report that a sulfur-doped indium catalyst exhibits high faradaic efficiency of formate (>85%) in a broad range of current density (25–100 mA cm−2) for electrocatalytic CO2 reduction in aqueous media. The formation rate of formate reaches 1449 μmol h−1 cm−2 with 93% faradaic efficiency, the highest value reported to date. Our studies suggest that sulfur accelerates CO2 reduction by a unique mechanism. Sulfur enhances the activation of water, forming hydrogen species that can readily react with CO2 to produce formate. The promoting effect of chalcogen modifiers can be extended to other metal catalysts. This work offers a simple and useful strategy for designing both active and selective electrocatalysts for CO2 reduction.

Suggested Citation

  • Wenchao Ma & Shunji Xie & Xia-Guang Zhang & Fanfei Sun & Jincan Kang & Zheng Jiang & Qinghong Zhang & De-Yin Wu & Ye Wang, 2019. "Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08805-x
    DOI: 10.1038/s41467-019-08805-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08805-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08805-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohan Yu & Yuting Xu & Le Li & Mingzhe Zhang & Wenhao Qin & Fanglin Che & Miao Zhong, 2024. "Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yan Lin & Tuo Wang & Lili Zhang & Gong Zhang & Lulu Li & Qingfeng Chang & Zifan Pang & Hui Gao & Kai Huang & Peng Zhang & Zhi-Jian Zhao & Chunlei Pei & Jinlong Gong, 2023. "Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Xin Chen & Junxiang Chen & Huayu Chen & Qiqi Zhang & Jiaxuan Li & Jiwei Cui & Yanhui Sun & Defa Wang & Jinhua Ye & Lequan Liu, 2023. "Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Cai Wang & Xiaoyu Wang & Houan Ren & Yilin Zhang & Xiaomei Zhou & Jing Wang & Qingxin Guan & Yuping Liu & Wei Li, 2023. "Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Bo-Wen Zhang & Meng-Nan Zhu & Min-Rui Gao & Xiuan Xi & Nanqi Duan & Zhou Chen & Ren-Fei Feng & Hongbo Zeng & Jing-Li Luo, 2022. "Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08805-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.