IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v322y2016icp10-18.html
   My bibliography  Save this article

Incorporating demographic diversity into food web models: Effects on community structure and dynamics

Author

Listed:
  • Fujiwara, Masami

Abstract

Life history strategies affect population dynamics; however, their effects on community dynamics remain poorly understood. A food web model with stage-structured populations (structured food web) and an equivalent model with unstructured populations (unstructured food web) were developed, and their structures and dynamics were compared. Both models incorporated energetic processes and allowed populations to go extinct and invade over time. The results from the two models shared some similarities. For example, all of the initial randomly formed food webs were unstable, but the extinction and invasion rates of populations declined over time. However, there were also clear differences between them. For example, preventing trophic interactions among similar-sized organisms led to a large increase in the number of persisting consumer populations under the unstructured food web, but the number was almost unchanged under the structured food web. Furthermore, an increase in the carrying capacity of primary producers caused an increase in the population extinction rate of consumers under the structured food web, but the extinction rate declined under the unstructured food web. Finally, the average trophic level of consumers in the unstructured food web was often at 2, indicating the food web primarily consisted of herbivores. On the other hand, the average trophic level in the structured food web was significantly higher, indicating the existence of trophic interactions among consumers. These results suggest the importance of incorporating stage structures into food web models to bridge the current theories of food web dynamics and empirical observations because nature consists of structured populations. In particular, I conclude that if one wants to study trophic interactions beyond herbivory, it is crucial to incorporate structured populations into food web models.

Suggested Citation

  • Fujiwara, Masami, 2016. "Incorporating demographic diversity into food web models: Effects on community structure and dynamics," Ecological Modelling, Elsevier, vol. 322(C), pages 10-18.
  • Handle: RePEc:eee:ecomod:v:322:y:2016:i:c:p:10-18
    DOI: 10.1016/j.ecolmodel.2015.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015005475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Roos, André M. & Schellekens, Tim & Van Kooten, Tobias & Van De Wolfshaar, Karen & Claessen, David & Persson, Lennart, 2008. "Simplifying a physiologically structured population model to a stage-structured biomass model," Theoretical Population Biology, Elsevier, vol. 73(1), pages 47-62.
    2. Lorrillière, Romain & Couvet, Denis & Robert, Alexandre, 2012. "The effects of direct and indirect constraints on biological communities," Ecological Modelling, Elsevier, vol. 224(1), pages 103-110.
    3. Zhou, Can & Fujiwara, Masami & Grant, William E., 2013. "Dynamics of a predator–prey interaction with seasonal reproduction and continuous predation," Ecological Modelling, Elsevier, vol. 268(C), pages 25-36.
    4. Sonja B. Otto & Björn C. Rall & Ulrich Brose, 2007. "Allometric degree distributions facilitate food-web stability," Nature, Nature, vol. 450(7173), pages 1226-1229, December.
    5. Volker H. W. Rudolf & Nick L. Rasmussen, 2013. "Population structure determines functional differences among species and ecosystem processes," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    6. Stefano Allesina & Si Tang, 2012. "Stability criteria for complex ecosystems," Nature, Nature, vol. 483(7388), pages 205-208, March.
    7. A. S. MacDougall & K. S. McCann & G. Gellner & R. Turkington, 2013. "Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse," Nature, Nature, vol. 494(7435), pages 86-89, February.
    8. Giacomini, Henrique C. & DeAngelis, Donald L. & Trexler, Joel C. & Petrere, Miguel, 2013. "Trait contributions to fish community assembly emerge from trophic interactions in an individual-based model," Ecological Modelling, Elsevier, vol. 251(C), pages 32-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Zepeng & de Roos, André M., 2015. "Alternative stable states in a stage-structured consumer–resource biomass model with niche shift and seasonal reproduction," Theoretical Population Biology, Elsevier, vol. 103(C), pages 60-70.
    2. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    3. González, Cecilia, 2023. "Evolution of the concept of ecological integrity and its study through networks," Ecological Modelling, Elsevier, vol. 476(C).
    4. Lin, Yangchen & Sutherland, William J., 2013. "Color and degree of interspecific synchrony of environmental noise affect the variability of complex ecological networks," Ecological Modelling, Elsevier, vol. 263(C), pages 162-173.
    5. Clenet, Maxime & El Ferchichi, Hafedh & Najim, Jamal, 2022. "Equilibrium in a large Lotka–Volterra system with pairwise correlated interactions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 423-444.
    6. Li, Fei & Kang, Hao & Xu, Jingfeng, 2022. "Financial stability and network complexity: A random matrix approach," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 177-185.
    7. Bastazini, Vinicius Augusto Galvão & Debastiani, Vanderlei & Cappelatti, Laura & Guimarães, Paulo & Pillar, Valério D., 2022. "The role of evolutionary modes for trait-based cascades in mutualistic networks," Ecological Modelling, Elsevier, vol. 470(C).
    8. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    9. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    10. Chen, Weidong & Xiong, Shi & Chen, Quanyu, 2022. "Characterizing the dynamic evolutionary behavior of multivariate price movement fluctuation in the carbon-fuel energy markets system from complex network perspective," Energy, Elsevier, vol. 239(PA).
    11. Timothée Poisot & Sonia Kéfi & Serge Morand & Michal Stanko & Pablo A Marquet & Michael E Hochberg, 2015. "A Continuum of Specialists and Generalists in Empirical Communities," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    12. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    13. Pedro Daleo & Juan Alberti & Enrique J. Chaneton & Oscar Iribarne & Pedro M. Tognetti & Jonathan D. Bakker & Elizabeth T. Borer & Martín Bruschetti & Andrew S. MacDougall & Jesús Pascual & Mahesh Sank, 2023. "Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    15. Zhifeng Zhang & Yuping Tang & Hongyi Pan & Caiyi Yao & Tianyi Zhang, 2022. "Assessment of the Ecological Protection Effectiveness of Protected Areas Using Propensity Score Matching: A Case Study in Sichuan, China," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    16. Zhu, Haoqi & Wang, Maoxiang & Hu, Fenglan, 2018. "Interaction and coexistence with self-regulating species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 447-458.
    17. Clinton Carbutt & Kevin Kirkman, 2022. "Ecological Grassland Restoration—A South African Perspective," Land, MDPI, vol. 11(4), pages 1-25, April.
    18. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    19. Adrian C. Newton, 2021. "Strengthening the Scientific Basis of Ecosystem Collapse Risk Assessments," Land, MDPI, vol. 10(11), pages 1-15, November.
    20. Verdy, Ariane, 2010. "Modulation of predator–prey interactions by the Allee effect," Ecological Modelling, Elsevier, vol. 221(8), pages 1098-1107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:322:y:2016:i:c:p:10-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.