IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37678-4.html
   My bibliography  Save this article

Soft, miniaturized, wireless olfactory interface for virtual reality

Author

Listed:
  • Yiming Liu

    (City University of Hong Kong)

  • Chun Ki Yiu

    (City University of Hong Kong
    Hong Kong Science Park)

  • Zhao Zhao

    (Beihang University
    China Special Equipment Inspection and Research Institute)

  • Wooyoung Park

    (City University of Hong Kong)

  • Rui Shi

    (City University of Hong Kong)

  • Xingcan Huang

    (City University of Hong Kong)

  • Yuyang Zeng

    (City University of Hong Kong)

  • Kuan Wang

    (Beihang University)

  • Tsz Hung Wong

    (City University of Hong Kong)

  • Shengxin Jia

    (City University of Hong Kong
    Hong Kong Science Park)

  • Jingkun Zhou

    (City University of Hong Kong
    Hong Kong Science Park)

  • Zhan Gao

    (City University of Hong Kong)

  • Ling Zhao

    (City University of Hong Kong)

  • Kuanming Yao

    (City University of Hong Kong)

  • Jian Li

    (City University of Hong Kong
    Hong Kong Science Park)

  • Chuanlu Sha

    (City University of Hong Kong)

  • Yuyu Gao

    (City University of Hong Kong
    Hong Kong Science Park)

  • Guangyao Zhao

    (City University of Hong Kong)

  • Ya Huang

    (City University of Hong Kong
    Hong Kong Science Park)

  • Dengfeng Li

    (City University of Hong Kong
    Hong Kong Science Park)

  • Qinglei Guo

    (School of Microelectronics, Shandong University)

  • Yuhang Li

    (Beihang University
    Ningbo Institute of Technology Beihang University)

  • Xinge Yu

    (City University of Hong Kong
    Hong Kong Science Park
    City University of Hong Kong)

Abstract

Recent advances in virtual reality (VR) technologies accelerate the creation of a flawless 3D virtual world to provide frontier social platform for human. Equally important to traditional visual, auditory and tactile sensations, olfaction exerts both physiological and psychological influences on humans. Here, we report a concept of skin-interfaced olfactory feedback systems with wirelessly, programmable capabilities based on arrays of flexible and miniaturized odor generators (OGs) for olfactory VR applications. By optimizing the materials selection, design layout, and power management, the OGs exhibit outstanding device performance in various aspects, from response rate, to odor concentration control, to long-term continuous operation, to high mechanical/electrical stability and to low power consumption. Representative demonstrations in 4D movie watching, smell message delivery, medical treatment, human emotion control and VR/AR based online teaching prove the great potential of the soft olfaction interface in various practical applications, including entertainment, education, human machine interfaces and so on.

Suggested Citation

  • Yiming Liu & Chun Ki Yiu & Zhao Zhao & Wooyoung Park & Rui Shi & Xingcan Huang & Yuyang Zeng & Kuan Wang & Tsz Hung Wong & Shengxin Jia & Jingkun Zhou & Zhan Gao & Ling Zhao & Kuanming Yao & Jian Li &, 2023. "Soft, miniaturized, wireless olfactory interface for virtual reality," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37678-4
    DOI: 10.1038/s41467-023-37678-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37678-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37678-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinge Yu & Zhaoqian Xie & Yang Yu & Jungyup Lee & Abraham Vazquez-Guardado & Haiwen Luan & Jasper Ruban & Xin Ning & Aadeel Akhtar & Dengfeng Li & Bowen Ji & Yiming Liu & Rujie Sun & Jingyue Cao & Qin, 2019. "Skin-integrated wireless haptic interfaces for virtual and augmented reality," Nature, Nature, vol. 575(7783), pages 473-479, November.
    2. Ryuji Hirayama & Diego Martinez Plasencia & Nobuyuki Masuda & Sriram Subramanian, 2019. "A volumetric display for visual, tactile and audio presentation using acoustic trapping," Nature, Nature, vol. 575(7782), pages 320-323, November.
    3. Brad A. Radvansky & Daniel A. Dombeck, 2018. "An olfactory virtual reality system for mice," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    4. Mengwei Liu & Yujia Zhang & Jiachuang Wang & Nan Qin & Heng Yang & Ke Sun & Jie Hao & Lin Shu & Jiarui Liu & Qiang Chen & Pingping Zhang & Tiger H. Tao, 2022. "A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. J. Broek & S. Abegg & S. E. Pratsinis & A. T. Güntner, 2019. "Highly selective detection of methanol over ethanol by a handheld gas sensor," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiming Liu & Shengxin Jia & Chun Ki Yiu & Wooyoung Park & Zhenlin Chen & Jin Nan & Xingcan Huang & Hongting Chen & Wenyang Li & Yuyu Gao & Weike Song & Tomoyuki Yokota & Takao Someya & Zhao Zhao & Yuh, 2024. "Intelligent wearable olfactory interface for latency-free mixed reality and fast olfactory enhancement," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiyue Luo & Chao Liu & Young Joong Lee & Joseph DelPreto & Kui Wu & Michael Foshey & Daniela Rus & Tomás Palacios & Yunzhu Li & Antonio Torralba & Wojciech Matusik, 2024. "Adaptive tactile interaction transfer via digitally embroidered smart gloves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Haisheng Xia & Yuchong Zhang & Nona Rajabi & Farzaneh Taleb & Qunting Yang & Danica Kragic & Zhijun Li, 2024. "Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Aobo Cheng & Xin Li & Ding Li & Zhikang Chen & Tianrui Cui & Lu-Qi Tao & Jinming Jian & HuiJun Xiao & Wancheng Shao & Zeyi Tang & Xinyue Li & Zirui Dong & Houfang Liu & Yi Yang & Tian-Ling Ren, 2025. "An intelligent hybrid-fabric wristband system enabled by thermal encapsulation for ergonomic human-machine interaction," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Yiming Liu & Shengxin Jia & Chun Ki Yiu & Wooyoung Park & Zhenlin Chen & Jin Nan & Xingcan Huang & Hongting Chen & Wenyang Li & Yuyu Gao & Weike Song & Tomoyuki Yokota & Takao Someya & Zhao Zhao & Yuh, 2024. "Intelligent wearable olfactory interface for latency-free mixed reality and fast olfactory enhancement," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Shaomei Lin & Weifeng Yang & Xubin Zhu & Yubin Lan & Kerui Li & Qinghong Zhang & Yaogang Li & Chengyi Hou & Hongzhi Wang, 2024. "Triboelectric micro-flexure-sensitive fiber electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Yanhua Liu & Jinlong Wang & Tao Liu & Zhiting Wei & Bin Luo & Mingchao Chi & Song Zhang & Chenchen Cai & Cong Gao & Tong Zhao & Shuangfei Wang & Shuangxi Nie, 2025. "Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Pavlo Makushko & Jin Ge & Gilbert Santiago Cañón Bermúdez & Oleksii Volkov & Yevhen Zabila & Stanislav Avdoshenko & Rico Illing & Leonid Ionov & Martin Kaltenbrunner & Jürgen Fassbender & Rui Xu & Den, 2025. "Scalable magnetoreceptive e-skin for energy-efficient high-resolution interaction towards undisturbed extended reality," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    12. Xiao Lu & Haiqiu Tan & Haodong Zhang & Wuhong Wang & Shaorong Xie & Tao Yue & Facheng Chen, 2025. "Triboelectric sensor gloves for real-time behavior identification and takeover time adjustment in conditionally automated vehicles," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Matthew Stein & Sam Keller & Yujie Luo & Ognjen Ilic, 2022. "Shaping contactless radiation forces through anomalous acoustic scattering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Chuanqian Shi & Jing Jiang & Chenglong Li & Chenhong Chen & Wei Jian & Jizhou Song, 2024. "Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Chunpeng Jiang & Wenqiang Xu & Yutong Li & Zhenjun Yu & Longchun Wang & Xiaotong Hu & Zhengyi Xie & Qingkun Liu & Bin Yang & Xiaolin Wang & Wenxin Du & Tutian Tang & Dongzhe Zheng & Siqiong Yao & Cewu, 2024. "Capturing forceful interaction with deformable objects using a deep learning-powered stretchable tactile array," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Dongjin Kim & Baekgyeom Kim & Bongsu Shin & Dongwook Shin & Chang-Kun Lee & Jae-Seung Chung & Juwon Seo & Yun-Tae Kim & Geeyoung Sung & Wontaek Seo & Sunil Kim & Sunghoon Hong & Sungwoo Hwang & Seungy, 2022. "Actuating compact wearable augmented reality devices by multifunctional artificial muscle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Jia-Hong Tian & Xin-Yue Hu & Zong-Ying Hu & Han-Wen Tian & Juan-Juan Li & Yu-Chen Pan & Hua-Bin Li & Dong-Sheng Guo, 2022. "A facile way to construct sensor array library via supramolecular chemistry for discriminating complex systems," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37678-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.