IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44897-w.html
   My bibliography  Save this article

Unraveling the crucial role of trace oxygen in organic semiconductors

Author

Listed:
  • Yinan Huang

    (Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
    Tianjin University)

  • Kunjie Wu

    (Chinese Academy of Sciences)

  • Yajing Sun

    (Tianjin University)

  • Yongxu Hu

    (Tianjin University)

  • Zhongwu Wang

    (Tianjin University)

  • Liqian Yuan

    (Tianjin University)

  • Shuguang Wang

    (Tianjin University)

  • Deyang Ji

    (Tianjin University)

  • Xiaotao Zhang

    (Tianjin University)

  • Huanli Dong

    (Chinese Academy of Sciences)

  • Zhongmiao Gong

    (Chinese Academy of Sciences)

  • Zhiyun Li

    (Chinese Academy of Sciences)

  • Xuefei Weng

    (Chinese Academy of Sciences)

  • Rong Huang

    (Chinese Academy of Sciences)

  • Yi Cui

    (Chinese Academy of Sciences)

  • Xiaosong Chen

    (Tianjin University)

  • Liqiang Li

    (Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
    Tianjin University
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Wenping Hu

    (Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
    Tianjin University
    Haihe Laboratory of Sustainable Chemical Transformations
    Collaborative Innovation Center of Chemical Science and Engineering)

Abstract

Optoelectronic properties of semiconductors are significantly modified by impurities at trace level. Oxygen, a prevalent impurity in organic semiconductors (OSCs), has long been considered charge-carrier traps, leading to mobility degradation and stability problems. However, this understanding relies on the conventional deoxygenation methods, by which oxygen residues in OSCs are inevitable. It implies that the current understanding is questionable. Here, we develop a non-destructive deoxygenation method (i.e., de-doping) for OSCs by a soft plasma treatment, and thus reveal that trace oxygen significantly pre-empties the donor-like traps in OSCs, which is the origin of p-type characteristics exhibited by the majority of these materials. This insight is completely opposite to the previously reported carrier trapping and can clarify some previously unexplained organic electronics phenomena. Furthermore, the de-doping results in the disappearance of p-type behaviors and significant increase of n-type properties, while re-doping (under light irradiation in O2) can controllably reverse the process. Benefiting from this, the key electronic characteristics (e.g., polarity, conductivity, threshold voltage, and mobility) can be precisely modulated in a nondestructive way, expanding the explorable property space for all known OSC materials.

Suggested Citation

  • Yinan Huang & Kunjie Wu & Yajing Sun & Yongxu Hu & Zhongwu Wang & Liqian Yuan & Shuguang Wang & Deyang Ji & Xiaotao Zhang & Huanli Dong & Zhongmiao Gong & Zhiyun Li & Xuefei Weng & Rong Huang & Yi Cui, 2024. "Unraveling the crucial role of trace oxygen in organic semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44897-w
    DOI: 10.1038/s41467-024-44897-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44897-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44897-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. He Yan & Zhihua Chen & Yan Zheng & Christopher Newman & Jordan R. Quinn & Florian Dötz & Marcel Kastler & Antonio Facchetti, 2009. "A high-mobility electron-transporting polymer for printed transistors," Nature, Nature, vol. 457(7230), pages 679-686, February.
    2. Deepak Venkateshvaran & Mark Nikolka & Aditya Sadhanala & Vincent Lemaur & Mateusz Zelazny & Michal Kepa & Michael Hurhangee & Auke Jisk Kronemeijer & Vincenzo Pecunia & Iyad Nasrallah & Igor Romanov , 2014. "Approaching disorder-free transport in high-mobility conjugated polymers," Nature, Nature, vol. 515(7527), pages 384-388, November.
    3. Yinan Huang & Xue Gong & Yancheng Meng & Zhongwu Wang & Xiaosong Chen & Jie Li & Deyang Ji & Zhongming Wei & Liqiang Li & Wenping Hu, 2021. "Effectively modulating thermal activated charge transport in organic semiconductors by precise potential barrier engineering," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Thangavel Kanagasekaran & Hidekazu Shimotani & Ryota Shimizu & Taro Hitosugi & Katsumi Tanigaki, 2017. "A new electrode design for ambipolar injection in organic semiconductors," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueli Yang & Ankang Guo & Jie Yang & Jinyang Chen & Ke Meng & Shunhua Hu & Ran Duan & Mingliang Zhu & Wenkang Shi & Yang Qin & Rui Zhang & Haijun Yang & Jikun Li & Lidan Guo & Xiangnan Sun & Yunqi Liu, 2024. "Halogenated-edge polymeric semiconductor for efficient spin transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Xiong & Xin-Yu Deng & Shuang-Yan Tian & Kai-Kai Liu & Yu-Hui Fang & Juan-Rong Wang & Yunfei Wang & Guangchao Liu & Jupeng Chen & Diego Rosas Villalva & Derya Baran & Xiaodan Gu & Ting Lei, 2024. "Counterion docking: a general approach to reducing energetic disorder in doped polymeric semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yan Wang & Yue Gong & Shenming Huang & Xuechao Xing & Ziyu Lv & Junjie Wang & Jia-Qin Yang & Guohua Zhang & Ye Zhou & Su-Ting Han, 2021. "Memristor-based biomimetic compound eye for real-time collision detection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Chungryeol Lee & Changhyeon Lee & Seungmin Lee & Junhwan Choi & Hocheon Yoo & Sung Gap Im, 2023. "A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Ming-Peng Zhuo & Xiao Wei & Yuan-Yuan Li & Ying-Li Shi & Guang-Peng He & Huixue Su & Ke-Qin Zhang & Jin-Ping Guan & Xue-Dong Wang & Yuchen Wu & Liang-Sheng Liao, 2024. "Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Lei Han & Simon Ogier & Jun Li & Dan Sharkey & Xiaokuan Yin & Andrew Baker & Alejandro Carreras & Fangyuan Chang & Kai Cheng & Xiaojun Guo, 2023. "Wafer-scale organic-on-III-V monolithic heterogeneous integration for active-matrix micro-LED displays," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xiao-Xiang Chen & Jia-Tong Li & Yu-Hui Fang & Xin-Yu Deng & Xue-Qing Wang & Guangchao Liu & Yunfei Wang & Xiaodan Gu & Shang-Da Jiang & Ting Lei, 2022. "High-mobility semiconducting polymers with different spin ground states," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Katia Pagano & Jin Gwan Kim & Joel Luke & Ellasia Tan & Katherine Stewart & Igor V. Sazanovich & Gabriel Karras & Hristo Ivov Gonev & Adam V. Marsh & Na Yeong Kim & Sooncheol Kwon & Young Yong Kim & M, 2024. "Slow vibrational relaxation drives ultrafast formation of photoexcited polaron pair states in glycolated conjugated polymers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Illia Dobryden & Vladimir V. Korolkov & Vincent Lemaur & Matthew Waldrip & Hio-Ieng Un & Dimitrios Simatos & Leszek J. Spalek & Oana D. Jurchescu & Yoann Olivier & Per M. Claesson & Deepak Venkateshva, 2022. "Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Yang Lu & Yingying Zhang & Chi-Yuan Yang & Sergio Revuelta & Haoyuan Qi & Chuanhui Huang & Wenlong Jin & Zichao Li & Victor Vega-Mayoral & Yannan Liu & Xing Huang & Darius Pohl & Miroslav Položij & Sh, 2022. "Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Yuchen Qiu & Bo Zhang & Junchuan Yang & Hanfei Gao & Shuang Li & Le Wang & Penghua Wu & Yewang Su & Yan Zhao & Jiangang Feng & Lei Jiang & Yuchen Wu, 2021. "Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44897-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.