IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57200-2.html
   My bibliography  Save this article

Low-temperature pressure-assisted liquid-metal printing for β-Ga2O3 thin-film transistors

Author

Listed:
  • Chi-Hsin Huang

    (University of California San Diego)

  • Ruei-Hong Cyu

    (National Tsing Hua University)

  • Yu-Lun Chueh

    (National Tsing Hua University
    National Tsing-Hua University
    National Sun Yat-Sen University
    Korea University)

  • Kenji Nomura

    (University of California San Diego
    University of California San Diego)

Abstract

Developing a low-temperature and cost-effective manufacturing process for energy-efficient and high-performance oxide-thin-film transistors (TFTs) is a crucial step toward advancing next-generation device applications such as wearable and flexible electronics. Among several methods, a liquid-metal printing technique is considered a promising, cost-effective oxide semiconductor process due to its inherent advantages, such as vacuum-free, low-thermal budget, high throughput, and scalability. In this study, we have developed a pressure-assisted liquid-metal printing technique enabling the low-temperature synthesis of polycrystalline wide bandgap n-channel oxide-TFTs. The n-channel oxide TFTs based on ~3 nm-thick β-Ga2O3 channels exhibited good TFT switching properties with a threshold voltage of ~3.8 V, a saturation mobility of ~11.7 cm2 V−1 s−1, an on/off-current ratio of ~109, and a subthreshold slope of ~163 mV/decade. We also observed p-channel operation in the off-stoichiometric GaOx channels fabricated at high-pressure conditions. Toward oxide-based circuit applications, we developed high-performance oxide-TFT-based inverters. While our approach can promote the advancement of low-temperature manufacturing for oxide TFT technology, further work will be necessary to confirm the role of the applied pressure in the β-Ga2O3 crystallization process.

Suggested Citation

  • Chi-Hsin Huang & Ruei-Hong Cyu & Yu-Lun Chueh & Kenji Nomura, 2025. "Low-temperature pressure-assisted liquid-metal printing for β-Ga2O3 thin-film transistors," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57200-2
    DOI: 10.1038/s41467-025-57200-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57200-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57200-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hagen Klauk & Ute Zschieschang & Jens Pflaum & Marcus Halik, 2007. "Ultralow-power organic complementary circuits," Nature, Nature, vol. 445(7129), pages 745-748, February.
    2. He Yan & Zhihua Chen & Yan Zheng & Christopher Newman & Jordan R. Quinn & Florian Dötz & Marcel Kastler & Antonio Facchetti, 2009. "A high-mobility electron-transporting polymer for printed transistors," Nature, Nature, vol. 457(7230), pages 679-686, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Shakiba & Azam Zavvari & Nader Aleebrahim & Mandeep Jit Singh, 2016. "Evaluating the academic trend of RFID technology based on SCI and SSCI publications from 2001 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 591-614, October.
    2. Yinan Huang & Kunjie Wu & Yajing Sun & Yongxu Hu & Zhongwu Wang & Liqian Yuan & Shuguang Wang & Deyang Ji & Xiaotao Zhang & Huanli Dong & Zhongmiao Gong & Zhiyun Li & Xuefei Weng & Rong Huang & Yi Cui, 2024. "Unraveling the crucial role of trace oxygen in organic semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Miao Xiong & Xin-Yu Deng & Shuang-Yan Tian & Kai-Kai Liu & Yu-Hui Fang & Juan-Rong Wang & Yunfei Wang & Guangchao Liu & Jupeng Chen & Diego Rosas Villalva & Derya Baran & Xiaodan Gu & Ting Lei, 2024. "Counterion docking: a general approach to reducing energetic disorder in doped polymeric semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57200-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.