IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44430-5.html
   My bibliography  Save this article

Inferring language dispersal patterns with velocity field estimation

Author

Listed:
  • Sizhe Yang

    (Fudan University)

  • Xiaoru Sun

    (Fudan University
    Fudan University)

  • Li Jin

    (Fudan University
    Fudan University)

  • Menghan Zhang

    (Fudan University
    Fudan University)

Abstract

Reconstructing the spatial evolution of languages can deepen our understanding of the demic diffusion and cultural spread. However, the phylogeographic approach that is frequently used to infer language dispersal patterns has limitations, primarily because the phylogenetic tree cannot fully explain the language evolution induced by the horizontal contact among languages, such as borrowing and areal diffusion. Here, we introduce the language velocity field estimation, which does not rely on the phylogenetic tree, to infer language dispersal trajectories and centre. Its effectiveness and robustness are verified through both simulated and empirical validations. Using language velocity field estimation, we infer the dispersal patterns of four agricultural language families and groups, encompassing approximately 700 language samples. Our results show that the dispersal trajectories of these languages are primarily compatible with population movement routes inferred from ancient DNA and archaeological materials, and their dispersal centres are geographically proximate to ancient homelands of agricultural or Neolithic cultures. Our findings highlight that the agricultural languages dispersed alongside the demic diffusions and cultural spreads during the past 10,000 years. We expect that language velocity field estimation could aid the spatial analysis of language evolution and further branch out into the studies of demographic and cultural dynamics.

Suggested Citation

  • Sizhe Yang & Xiaoru Sun & Li Jin & Menghan Zhang, 2024. "Inferring language dispersal patterns with velocity field estimation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44430-5
    DOI: 10.1038/s41467-023-44430-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44430-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44430-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mattia Mazzoli & Alex Molas & Aleix Bassolas & Maxime Lenormand & Pere Colet & José J. Ramasco, 2019. "Field theory for recurrent mobility," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Menghan Zhang & Shi Yan & Wuyun Pan & Li Jin, 2019. "Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic," Nature, Nature, vol. 569(7754), pages 112-115, May.
    3. Martine Robbeets & Remco Bouckaert & Matthew Conte & Alexander Savelyev & Tao Li & Deog-Im An & Ken-ichi Shinoda & Yinqiu Cui & Takamune Kawashima & Geonyoung Kim & Junzo Uchiyama & Joanna Dolińska & , 2021. "Triangulation supports agricultural spread of the Transeurasian languages," Nature, Nature, vol. 599(7886), pages 616-621, November.
    4. Chris Venditti & Andrew Meade & Mark Pagel, 2011. "Multiple routes to mammalian diversity," Nature, Nature, vol. 479(7373), pages 393-396, November.
    5. Jared Diamond, 2002. "Evolution, consequences and future of plant and animal domestication," Nature, Nature, vol. 418(6898), pages 700-707, August.
    6. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    7. Russell D. Gray & Quentin D. Atkinson, 2003. "Language-tree divergence times support the Anatolian theory of Indo-European origin," Nature, Nature, vol. 426(6965), pages 435-439, November.
    8. Daniel M. Abrams & Steven H. Strogatz, 2003. "Modelling the dynamics of language death," Nature, Nature, vol. 424(6951), pages 900-900, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Desmet & Ignacio Ortuño-Ortín & Romain Wacziarg, 2009. "The political economy of ethnolinguistic cleavages," Working Papers 2009-17, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    2. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    4. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Victor Ginsburgh & Shlomo Weber, 2020. "The Economics of Language," Journal of Economic Literature, American Economic Association, vol. 58(2), pages 348-404, June.
    6. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    7. Yoshiaki Yasumizu & Naganari Ohkura & Hisashi Murata & Makoto Kinoshita & Soichiro Funaki & Satoshi Nojima & Kansuke Kido & Masaharu Kohara & Daisuke Motooka & Daisuke Okuzaki & Shuji Suganami & Eriko, 2022. "Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    9. Bakalis, Evangelos & Galani, Alexandra, 2012. "Modeling language evolution: Aromanian, an endangered language in Greece," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4963-4969.
    10. Heather Williams & Andrew Scharf & Anna R. Ryba & D. Ryan Norris & Daniel J. Mennill & Amy E. M. Newman & Stéphanie M. Doucet & Julie C. Blackwood, 2022. "Cumulative cultural evolution and mechanisms for cultural selection in wild bird songs," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Serge Svizzero & Clem Tisdell, 2014. "Theories About the Commencement of Agriculture in Prehistoric Societies: A Critical Evaluation," Rivista di storia economica, Società editrice il Mulino, issue 3, pages 255-280.
    12. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Ayan Sengupta & Soham Das & Md. Shad Akhtar & Tanmoy Chakraborty, 2024. "Social, economic, and demographic factors drive the emergence of Hinglish code-mixing on social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    14. GianCarlo Moschini, 2008. "Biotechnology and the development of food markets: retrospect and prospects," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(3), pages 331-355, September.
    15. repec:idb:brikps:64718 is not listed on IDEAS
    16. David J. Dittmar & Franziska Pielmeier & Nicholas Strieder & Alexander Fischer & Michael Herbst & Hanna Stanewsky & Niklas Wenzl & Eveline Röseler & Rüdiger Eder & Claudia Gebhard & Lucia Schwarzfisch, 2024. "Donor regulatory T cells rapidly adapt to recipient tissues to control murine acute graft-versus-host disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Joseph Flavian Gomes, 2020. "The health costs of ethnic distance: evidence from sub-Saharan Africa," Journal of Economic Growth, Springer, vol. 25(2), pages 195-226, June.
    18. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Mathieu Gautier & Denis Laloë & Katayoun Moazami-Goudarzi, 2010. "Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    20. Aparicio Fenoll, Ainoa & Kuehn, Zoë, 2016. "Education Policies and Migration across European Countries," IZA Discussion Papers 9755, Institute of Labor Economics (IZA).
    21. Vicky Chuqiao Yang & Tamara van der Does & Henrik Olsson, 2021. "Falling through the cracks: Modeling the formation of social category boundaries," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-11, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44430-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.