IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v479y2011i7373d10.1038_nature10516.html
   My bibliography  Save this article

Multiple routes to mammalian diversity

Author

Listed:
  • Chris Venditti

    (University of Hull)

  • Andrew Meade

    (School of Biological Sciences, University of Reading)

  • Mark Pagel

    (School of Biological Sciences, University of Reading
    Santa Fe Institute, 1399 Hyde Park Road)

Abstract

The roots of mammalian diversity The textbook view of mammalian evolution is one of an adaptive radiation, in which all the major forms arose to fill the available ecological niches in an explosive burst beginning around 90 million years ago, followed by much slower adaptive change leading up to the present. In a statistical study, Mark Pagel and colleagues track the evolutionary trends in body size for a complete phylogeny of the Mammalia and find no evidence for classic adaptive radiations at any point in history. Rates of speciation and morphological evolution are decoupled and there is no early evolutionary burst. Instead, body size evolution occurs in sporadic bursts across the phylogenetic tree.

Suggested Citation

  • Chris Venditti & Andrew Meade & Mark Pagel, 2011. "Multiple routes to mammalian diversity," Nature, Nature, vol. 479(7373), pages 393-396, November.
  • Handle: RePEc:nat:nature:v:479:y:2011:i:7373:d:10.1038_nature10516
    DOI: 10.1038/nature10516
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10516
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lauren N. Wilson & Jacob D. Gardner & John P. Wilson & Alex Farnsworth & Zackary R. Perry & Patrick S. Druckenmiller & Gregory M. Erickson & Chris L. Organ, 2024. "Global latitudinal gradients and the evolution of body size in dinosaurs and mammals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Mark Pagel & Ciara O’Donovan & Andrew Meade, 2022. "General statistical model shows that macroevolutionary patterns and processes are consistent with Darwinian gradualism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Sizhe Yang & Xiaoru Sun & Li Jin & Menghan Zhang, 2024. "Inferring language dispersal patterns with velocity field estimation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Felipe O. Cerezer & Cristian S. Dambros & Marco T. P. Coelho & Fernanda A. S. Cassemiro & Elisa Barreto & James S. Albert & Rafael O. Wüest & Catherine H. Graham, 2023. "Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Antoine Couto & Fletcher J. Young & Daniele Atzeni & Simon Marty & Lina Melo‐Flórez & Laura Hebberecht & Monica Monllor & Chris Neal & Francesco Cicconardi & W. Owen McMillan & Stephen H. Montgomery, 2023. "Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Fabien Lafuma & Ian J. Corfe & Julien Clavel & Nicolas Di-Poï, 2021. "Multiple evolutionary origins and losses of tooth complexity in squamates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Ana N. Campoy & Marcelo M. Rivadeneira & Cristián E. Hernández & Andrew Meade & Chris Venditti, 2023. "Deep-sea origin and depth colonization associated with phenotypic innovations in scleractinian corals," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:479:y:2011:i:7373:d:10.1038_nature10516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.