IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009389.html
   My bibliography  Save this article

Interplay between exogenous triggers and endogenous behavioral changes in contagion processes on social networks

Author

Listed:
  • Eminente, Clara
  • Artime, Oriol
  • De Domenico, Manlio

Abstract

In recent years, statistical physics’ methodologies have proven extremely successful in offering insights into the mechanisms that govern social interactions. However, the question of whether these models are able to capture trends observed in real-world datasets is hardly addressed in the current literature. With this work we aim at bridging the gap between theoretical modeling and validation with data. In particular, we propose a model for opinion dynamics on a social network in the presence of external triggers, framing the interpretation of the model in the context of misbehavior spreading. We divide our population in aware, unaware and zealot/educated agents. Individuals change their status according to two competing dynamics, referred to as behavioral dynamics and broadcasting. The former accounts for information spreading through contact among individuals whereas broadcasting plays the role of an external agent, modeling the effect of mainstream media outlets. Through both simulations and analytical computations we find that the stationary distribution of the fraction of unaware agents in the system undergoes a phase transition when an all-to-all approximation is considered. Surprisingly, such a phase transition disappears in the presence of a minimum fraction of educated agents. Finally, we validate our model using data collected from the public discussion on Twitter, including millions of posts, about the potential adverse effects of the AstraZeneca vaccine against COVID-19. We show that the intervention of external agents, as accounted for in our model, is able to reproduce some key features that are found in this real-world dataset.

Suggested Citation

  • Eminente, Clara & Artime, Oriol & De Domenico, Manlio, 2022. "Interplay between exogenous triggers and endogenous behavioral changes in contagion processes on social networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009389
    DOI: 10.1016/j.chaos.2022.112759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John M. Barry, 2009. "Pandemics: avoiding the mistakes of 1918," Nature, Nature, vol. 459(7245), pages 324-325, May.
    2. Juan Carlos González-Avella & Mario G. Cosenza & Konstantin Klemm & Víctor M. Eguíluz & Maxi San Miguel, 2007. "Information Feedback and Mass Media Effects in Cultural Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-9.
    3. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    4. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    5. Mary Sanford & James Painter & Taha Yasseri & Jamie Lorimer, 2021. "Controversy around climate change reports: a case study of Twitter responses to the 2019 IPCC report on land," Climatic Change, Springer, vol. 167(3), pages 1-25, August.
    6. Daniel M. Abrams & Steven H. Strogatz, 2003. "Modelling the dynamics of language death," Nature, Nature, vol. 424(6951), pages 900-900, August.
    7. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    8. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2016. "The noisy voter model on complex networks," Papers 1602.06935, arXiv.org, revised Apr 2016.
    9. repec:nas:journl:v:115:y:2018:p:12435-12440 is not listed on IDEAS
    10. Sacco, Pier Luigi & Gallotti, Riccardo & Pilati, Federico & Castaldo, Nicola & De Domenico, Manlio, 2021. "Emergence of knowledge communities and information centralization during the COVID-19 pandemic," Social Science & Medicine, Elsevier, vol. 285(C).
    11. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    12. Sandra González-Bailón & Manlio De Domenico, 2021. "Bots are less central than verified accounts during contentious political events," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(11), pages 2013443118-, March.
    13. Lebowitz, Joel L. & Saleur, H., 1986. "Percolation in strongly correlated systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 138(1), pages 194-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peralta, Antonio F. & Khalil, Nagi & Toral, Raúl, 2020. "Ordering dynamics in the voter model with aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    2. Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.
    3. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2016. "The noisy voter model on complex networks," Papers 1602.06935, arXiv.org, revised Apr 2016.
    4. Vygintas Gontis & Aleksejus Kononovicius, 2017. "Spurious memory in non-equilibrium stochastic models of imitative behavior," Papers 1707.09801, arXiv.org.
    5. Kirill S. Glavatskiy & Mikhail Prokopenko & Adrian Carro & Paul Ormerod & Michael Harré, 2021. "Explaining herding and volatility in the cyclical price dynamics of urban housing markets using a large-scale agent-based model," SN Business & Economics, Springer, vol. 1(6), pages 1-21, June.
    6. Sunyoung Lee & Keun Lee, 2021. "3% rules the market: herding behavior of a group of investors, asset market volatility, and return to the group in an agent-based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 359-380, April.
    7. Moran, José & Fosset, Antoine & Kirman, Alan & Benzaquen, Michael, 2021. "From ants to fishing vessels: a simple model for herding and exploitation of finite resources," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
    8. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    9. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    10. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    11. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    12. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    13. Vygintas Gontis & Aleksejus Kononovicius & Stefan Reimann, 2012. "The class of nonlinear stochastic models as a background for the bursty behavior in financial markets," Papers 1201.3083, arXiv.org, revised May 2012.
    14. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    15. Alfarano Simone & Milakovic Mishael, 2012. "Identification of Interaction Effects in Survey Expectations: A Cautionary Note," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(4), pages 1-23, October.
    16. Steven D. Silver & Marko Raseta, 2021. "An ARFIMA multi-level model of dual-component expectations in repeated cross-sectional survey data," Empirical Economics, Springer, vol. 60(2), pages 683-699, February.
    17. Gabriele Tedeschi & Fabio Caccioli & Maria Cristina Recchioni, 2020. "Taming financial systemic risk: models, instruments and early warning indicators," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 1-7, January.
    18. Raquel Almeida Ramos & Federico Bassi & Dany Lang, 2020. "Bet against the trend and cash in profits," DISCE - Working Papers del Dipartimento di Economia e Finanza def090, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    19. Federico Bassi & Raquel Ramos & Dany Lang, 2023. "Bet against the trend and cash in profits: An agent-based model of endogenous fluctuations of exchange rates," Journal of Evolutionary Economics, Springer, vol. 33(2), pages 429-472, April.
    20. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.