IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9496-d620468.html
   My bibliography  Save this article

Sustainable Biological Ammonia Production towards a Carbon-Free Society

Author

Listed:
  • Yukio Watanabe

    (Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan)

  • Wataru Aoki

    (Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan)

  • Mitsuyoshi Ueda

    (Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan)

Abstract

A sustainable society was proposed more than 50 years ago. However, it is yet to be realised. For example, the production of ammonia, an important chemical widely used in the agriculture, steel, chemical, textile, and pharmaceutical industries, still depends on fossil fuels. Recently, biological approaches to achieve sustainable ammonia production have been gaining attention. Moreover, unlike chemical methods, biological approaches have a lesser environmental impact because ammonia can be produced under mild conditions of normal temperature and pressure. Therefore, in previous studies, nitrogen fixation by nitrogenase, including enzymatic ammonia production using food waste, has been attempted. Additionally, the production of crops using nitrogen-fixing bacteria has been implemented in the industry as one of the most promising approaches to achieving a sustainable ammonia economy. Thus, in this review, we described previous studies on biological ammonia production and showed the prospects for realising a sustainable society.

Suggested Citation

  • Yukio Watanabe & Wataru Aoki & Mitsuyoshi Ueda, 2021. "Sustainable Biological Ammonia Production towards a Carbon-Free Society," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9496-:d:620468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    2. S. A. Montzka & E. J. Dlugokencky & J. H. Butler, 2011. "Non-CO2 greenhouse gases and climate change," Nature, Nature, vol. 476(7358), pages 43-50, August.
    3. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    4. Yuya Ashida & Kazuya Arashiba & Kazunari Nakajima & Yoshiaki Nishibayashi, 2019. "Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water," Nature, Nature, vol. 568(7753), pages 536-540, April.
    5. Philippe D. Tortell, 2020. "Earth 2020: Science, society, and sustainability in the Anthropocene," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(16), pages 8683-8691, April.
    6. Graziano, Marcello & Lecca, Patrizio & Musso, Marta, 2017. "Historic paths and future expectations: The macroeconomic impacts of the offshore wind technologies in the UK," Energy Policy, Elsevier, vol. 108(C), pages 715-730.
    7. Ma, Hongzhi & Wang, Qunhui & Qian, Dayi & Gong, Lijuan & Zhang, Wenyu, 2009. "The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage," Renewable Energy, Elsevier, vol. 34(6), pages 1466-1470.
    8. Van Dyk, J.S. & Gama, R. & Morrison, D. & Swart, S. & Pletschke, B.I., 2013. "Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 521-531.
    9. Ilaria Capua & Enrico Giovannini, 2019. "Coding system to track research progress towards SDGs," Nature, Nature, vol. 572(7768), pages 178-178, August.
    10. Miura, Daisuke & Tezuka, Tetsuo, 2014. "A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan," Energy, Elsevier, vol. 68(C), pages 428-436.
    11. Nakanishi, Akihito & Kuroda, Kouichi & Ueda, Mitsuyoshi, 2012. "Direct fermentation of newspaper after laccase-treatment using yeast codisplaying endoglucanase, cellobiohydrolase, and β-glucosidase," Renewable Energy, Elsevier, vol. 44(C), pages 199-205.
    12. A. Schmid & J. S. Dordick & B. Hauer & A. Kiener & M. Wubbolts & B. Witholt, 2001. "Industrial biocatalysis today and tomorrow," Nature, Nature, vol. 409(6817), pages 258-268, January.
    13. Hermann Schindelin & Caroline Kisker & Jamie L. Schlessman & James B. Howard & Douglas C. Rees, 1997. "Structure of ADP·AIF4–-stabilized nitrogenase complex and its implications for signal transduction," Nature, Nature, vol. 387(6631), pages 370-376, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodora Karanisa & Alexandre Amato & Renee Richer & Sara Abdul Majid & Cynthia Skelhorn & Sami Sayadi, 2021. "Agricultural Production in Qatar’s Hot Arid Climate," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    2. Makhdoomi, Sina & Askarzadeh, Alireza, 2020. "Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS)," Renewable Energy, Elsevier, vol. 159(C), pages 272-285.
    3. Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
    4. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    5. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    7. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    8. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    9. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    10. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    11. Andreea Orîndaru & Mihaela Constantinescu & Claudia-Elena Țuclea & Ștefan-Claudiu Căescu & Margareta Stela Florescu & Ionel Dumitru, 2020. "Rurbanization—Making the City Greener: Young Citizen Implication and Future Actions," Sustainability, MDPI, vol. 12(17), pages 1-20, September.
    12. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    13. Jonathan Fahlbeck & Håkan Nilsson & Saeed Salehi, 2021. "Flow Characteristics of Preliminary Shutdown and Startup Sequences for a Model Counter-Rotating Pump-Turbine," Energies, MDPI, vol. 14(12), pages 1-17, June.
    14. Fan, Xiaoyu & Xu, Hao & Li, Yihong & Li, Junxian & Wang, Zhikang & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration," Applied Energy, Elsevier, vol. 371(C).
    15. Shabani, Masoume & Mahmoudimehr, Javad, 2019. "Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system," Renewable Energy, Elsevier, vol. 141(C), pages 181-194.
    16. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    17. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    18. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    19. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    20. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9496-:d:620468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.