IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07712-x.html
   My bibliography  Save this article

Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance

Author

Listed:
  • Congcong Du

    (Yanshan University)

  • Shenbao Jin

    (Nanjing University of Science and Technology)

  • Yuan Fang

    (Peking University)

  • Jin Li

    (Purdue University)

  • Shenyang Hu

    (Pacific Northwest National Laboratory)

  • Tingting Yang

    (Yanshan University)

  • Ying Zhang

    (Yanshan University)

  • Jianyu Huang

    (Yanshan University)

  • Gang Sha

    (Nanjing University of Science and Technology)

  • Yugang Wang

    (Peking University)

  • Zhongxia Shang

    (Purdue University)

  • Xinghang Zhang

    (Purdue University)

  • Baoru Sun

    (Yanshan University)

  • Shengwei Xin

    (Yanshan University)

  • Tongde Shen

    (Yanshan University)

Abstract

Nanocrystalline (NC) metals are stronger and more radiation-tolerant than their coarse-grained (CG) counterparts, but they often suffer from poor thermal stability as nanograins coarsen significantly when heated to 0.3 to 0.5 of their melting temperature (Tm). Here, we report an NC austenitic stainless steel (NC-SS) containing 1 at% lanthanum with an average grain size of 45 nm and an ultrahigh yield strength of ~2.5 GPa that exhibits exceptional thermal stability up to 1000 °C (0.75 Tm). In-situ irradiation to 40 dpa at 450 °C and ex-situ irradiation to 108 dpa at 600 °C produce neither significant grain growth nor void swelling, in contrast to significant void swelling of CG-SS at similar doses. This thermal stability is due to segregation of elemental lanthanum and (La, O, Si)-rich nanoprecipitates at grain boundaries. Microstructure dependent cluster dynamics show grain boundary sinks effectively reduce steady-state vacancy concentrations to suppress void swelling upon irradiation.

Suggested Citation

  • Congcong Du & Shenbao Jin & Yuan Fang & Jin Li & Shenyang Hu & Tingting Yang & Ying Zhang & Jianyu Huang & Gang Sha & Yugang Wang & Zhongxia Shang & Xinghang Zhang & Baoru Sun & Shengwei Xin & Tongde , 2018. "Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07712-x
    DOI: 10.1038/s41467-018-07712-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07712-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07712-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Shucai Zhang & Hao Feng & Huabing Li & Zhouhua Jiang & Tao Zhang & Hongchun Zhu & Yue Lin & Wei Zhang & Guoping Li, 2023. "Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07712-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.