IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43639-8.html
   My bibliography  Save this article

The role of halogens in Au–S bond cleavage for energy-differentiated catalysis at the single-bond limit

Author

Listed:
  • Peihui Li

    (Nankai University)

  • Songjun Hou

    (Lancaster University)

  • Qingqing Wu

    (Lancaster University)

  • Yijian Chen

    (Nankai University)

  • Boyu Wang

    (Nankai University)

  • Haiyang Ren

    (Nankai University)

  • Jinying Wang

    (Nankai University)

  • Zhaoyi Zhai

    (Nankai University)

  • Zhongbo Yu

    (Nankai University)

  • Colin J. Lambert

    (Lancaster University)

  • Chuancheng Jia

    (Nankai University)

  • Xuefeng Guo

    (Nankai University
    Peking University)

Abstract

The transformation from one compound to another involves the breaking and formation of chemical bonds at the single-bond level, especially during catalytic reactions that are of great significance in broad fields such as energy conversion, environmental science, life science and chemical synthesis. The study of the reaction process at the single-bond limit is the key to understanding the catalytic reaction mechanism and further rationally designing catalysts. Here, we develop a method to monitor the catalytic process from the perspective of the single-bond energy using high-resolution scanning tunneling microscopy single-molecule junctions. Experimental and theoretical studies consistently reveal that the attack of a halogen atom on an Au atom can reduce the breaking energy of Au−S bonds, thereby accelerating the bond cleavage reaction and shortening the plateau length during the single-molecule junction breaking. Furthermore, the distinction in catalytic activity between different halogen atoms can be compared as well. This study establishes the intrinsic relationship among the reaction activation energy, the chemical bond breaking energy and the single-molecule junction breaking process, strengthening our mastery of catalytic reactions towards precise chemistry.

Suggested Citation

  • Peihui Li & Songjun Hou & Qingqing Wu & Yijian Chen & Boyu Wang & Haiyang Ren & Jinying Wang & Zhaoyi Zhai & Zhongbo Yu & Colin J. Lambert & Chuancheng Jia & Xuefeng Guo, 2023. "The role of halogens in Au–S bond cleavage for energy-differentiated catalysis at the single-bond limit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43639-8
    DOI: 10.1038/s41467-023-43639-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43639-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43639-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cancan Huang & Martyn Jevric & Anders Borges & Stine T. Olsen & Joseph M. Hamill & Jue-Ting Zheng & Yang Yang & Alexander Rudnev & Masoud Baghernejad & Peter Broekmann & Anne Ugleholdt Petersen & Thom, 2017. "Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    2. Albert C. Aragonès & Naomi L. Haworth & Nadim Darwish & Simone Ciampi & Evelyn Jane Mannix & Gordon G. Wallace & Ismael Diez-Perez & Michelle L. Coote, 2016. "Electrostatic catalysis of a Diels–Alder reaction," Nature, Nature, vol. 531(7592), pages 88-91, March.
    3. U. T. Bornscheuer & G. W. Huisman & R. J. Kazlauskas & S. Lutz & J. C. Moore & K. Robins, 2012. "Engineering the third wave of biocatalysis," Nature, Nature, vol. 485(7397), pages 185-194, May.
    4. Joonhee Lee & Kevin T. Crampton & Nicholas Tallarida & V. Ara Apkarian, 2019. "Visualizing vibrational normal modes of a single molecule with atomically confined light," Nature, Nature, vol. 568(7750), pages 78-82, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuge Zhang & Samira M. Azarin & Casim A. Sarkar, 2022. "Model-guided engineering of DNA sequences with predictable site-specific recombination rates," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Chenghai Sun & Gen Lu & Baoming Chen & Guangjun Li & Ya Wu & Yannik Brack & Dong Yi & Yu-Fei Ao & Shuke Wu & Ren Wei & Yuhui Sun & Guifa Zhai & Uwe T. Bornscheuer, 2024. "Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Aiko Kurimoto & Seyed A. Nasseri & Camden Hunt & Mike Rooney & David J. Dvorak & Natalie E. LeSage & Ryan P. Jansonius & Stephen G. Withers & Curtis P. Berlinguette, 2023. "Bioelectrocatalysis with a palladium membrane reactor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Leopoldo Mejía & Pilar Cossio & Ignacio Franco, 2023. "Microscopic theory, analysis, and interpretation of conductance histograms in molecular junctions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jack Griffiths & Tamás Földes & Bart Nijs & Rohit Chikkaraddy & Demelza Wright & William M. Deacon & Dénes Berta & Charlie Readman & David-Benjamin Grys & Edina Rosta & Jeremy J. Baumberg, 2021. "Resolving sub-angstrom ambient motion through reconstruction from vibrational spectra," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Shuyun Ju & Kaylee P. Kuzelka & Rui Guo & Benjamin Krohn-Hansen & Jianping Wu & Satish K. Nair & Yang Yang, 2023. "A biocatalytic platform for asymmetric alkylation of α-keto acids by mining and engineering of methyltransferases," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Linfei Li & Jeremy F. Schultz & Sayantan Mahapatra & Zhongyi Lu & Xu Zhang & Nan Jiang, 2022. "Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Jiří Doležal & Sofia Canola & Prokop Hapala & Rodrigo Cezar Campos Ferreira & Pablo Merino & Martin Švec, 2022. "Evidence of exciton-libron coupling in chirally adsorbed single molecules," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Cottier, Thomas & Foltea, Marina & Jost, Dannie, 2012. "Is there a case to be made for a global patent system? The example of plant biotechnology," Papers 428, World Trade Institute.
    10. Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Ziyi Zhou & Liang Zhang & Yuanxi Yu & Banghao Wu & Mingchen Li & Liang Hong & Pan Tan, 2024. "Enhancing efficiency of protein language models with minimal wet-lab data through few-shot learning," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Wenhao Fu & Huanyu Chi & Xin Dai & Hongni Zhu & Vince St. Dollente Mesias & Wei Liu & Jinqing Huang, 2023. "Efficient optical plasmonic tweezer-controlled single-molecule SERS characterization of pH-dependent amylin species in aqueous milieus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Wei Huang & Haitao Yuan & Huangsheng Yang & Xiaomin Ma & Shuyao Huang & Hongjie Zhang & Siming Huang & Guosheng Chen & Gangfeng Ouyang, 2023. "Green synthesis of stable hybrid biocatalyst using a hydrogen-bonded, π-π-stacking supramolecular assembly for electrochemical immunosensor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Songsong Li & Edward R. Jira & Nicholas H. Angello & Jialing Li & Hao Yu & Jeffrey S. Moore & Ying Diao & Martin D. Burke & Charles M. Schroeder, 2022. "Using automated synthesis to understand the role of side chains on molecular charge transport," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Yang Luo & Shaoxiang Sheng & Michele Pisarra & Alberto Martin-Jimenez & Fernando Martin & Klaus Kern & Manish Garg, 2024. "Selective excitation of vibrations in a single molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Kerr Ding & Michael Chin & Yunlong Zhao & Wei Huang & Binh Khanh Mai & Huanan Wang & Peng Liu & Yang Yang & Yunan Luo, 2024. "Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Hao He & Maofeng Cao & Yun Gao & Peng Zheng & Sen Yan & Jin-Hui Zhong & Lei Wang & Dayong Jin & Bin Ren, 2024. "Noise learning of instruments for high-contrast, high-resolution and fast hyperspectral microscopy and nanoscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Le Quang Anh Tuan, 2018. "Rational protein design for enhancing thermal stability of industrial enzymes," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 8(1), pages 3-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43639-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.