IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v568y2019i7750d10.1038_s41586-019-1059-9.html
   My bibliography  Save this article

Visualizing vibrational normal modes of a single molecule with atomically confined light

Author

Listed:
  • Joonhee Lee

    (University of California)

  • Kevin T. Crampton

    (University of California
    Pacific Northwest National Laboratory)

  • Nicholas Tallarida

    (University of California
    Jet Propulsion Laboratory, California Institute of Technology)

  • V. Ara Apkarian

    (University of California)

Abstract

The internal vibrations of molecules drive the structural transformations that underpin chemistry and cellular function. While vibrational frequencies are measured by spectroscopy, the normal modes of motion are inferred through theory because their visualization would require microscopy with ångström-scale spatial resolution—nearly three orders of magnitude smaller than the diffraction limit in optics1. Using a metallic tip to focus light and taking advantage of the surface-enhanced Raman effect2 to amplify the signal from individual molecules, tip-enhanced Raman spectromicroscopy (TER-SM)3,4 reaches the requisite sub-molecular spatial resolution5, confirming that light can be confined in picocavities6–10 and anticipating the direct visualization of molecular vibrations11–13. Here, by using TER-SM at the precisely controllable junction of a cryogenic ultrahigh-vacuum scanning tunnelling microscope14–16, we show that ångström-scale resolution is attained at subatomic separation between the tip atom and a molecule in the quantum tunnelling regime of plasmons6,8,9,17. We record vibrational spectra within a single molecule, obtain images of normal modes and atomically parse the intramolecular charges and currents driven by vibrations. Our analysis provides a paradigm for optics in the atomistic near-field.

Suggested Citation

  • Joonhee Lee & Kevin T. Crampton & Nicholas Tallarida & V. Ara Apkarian, 2019. "Visualizing vibrational normal modes of a single molecule with atomically confined light," Nature, Nature, vol. 568(7750), pages 78-82, April.
  • Handle: RePEc:nat:nature:v:568:y:2019:i:7750:d:10.1038_s41586-019-1059-9
    DOI: 10.1038/s41586-019-1059-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1059-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1059-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Luo & Shaoxiang Sheng & Michele Pisarra & Alberto Martin-Jimenez & Fernando Martin & Klaus Kern & Manish Garg, 2024. "Selective excitation of vibrations in a single molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Peihui Li & Songjun Hou & Qingqing Wu & Yijian Chen & Boyu Wang & Haiyang Ren & Jinying Wang & Zhaoyi Zhai & Zhongbo Yu & Colin J. Lambert & Chuancheng Jia & Xuefeng Guo, 2023. "The role of halogens in Au–S bond cleavage for energy-differentiated catalysis at the single-bond limit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Hao He & Maofeng Cao & Yun Gao & Peng Zheng & Sen Yan & Jin-Hui Zhong & Lei Wang & Dayong Jin & Bin Ren, 2024. "Noise learning of instruments for high-contrast, high-resolution and fast hyperspectral microscopy and nanoscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Jiří Doležal & Sofia Canola & Prokop Hapala & Rodrigo Cezar Campos Ferreira & Pablo Merino & Martin Švec, 2022. "Evidence of exciton-libron coupling in chirally adsorbed single molecules," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Jack Griffiths & Tamás Földes & Bart Nijs & Rohit Chikkaraddy & Demelza Wright & William M. Deacon & Dénes Berta & Charlie Readman & David-Benjamin Grys & Edina Rosta & Jeremy J. Baumberg, 2021. "Resolving sub-angstrom ambient motion through reconstruction from vibrational spectra," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Wenhao Fu & Huanyu Chi & Xin Dai & Hongni Zhu & Vince St. Dollente Mesias & Wei Liu & Jinqing Huang, 2023. "Efficient optical plasmonic tweezer-controlled single-molecule SERS characterization of pH-dependent amylin species in aqueous milieus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Linfei Li & Jeremy F. Schultz & Sayantan Mahapatra & Zhongyi Lu & Xu Zhang & Nan Jiang, 2022. "Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:568:y:2019:i:7750:d:10.1038_s41586-019-1059-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.