IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31836-w.html
   My bibliography  Save this article

Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin

Author

Listed:
  • Alexander Belyy

    (Max Planck Institute of Molecular Physiology)

  • Florian Lindemann

    (Leibniz-Forschungsinstitut für Molekulare Pharmakologie)

  • Daniel Roderer

    (Max Planck Institute of Molecular Physiology
    Leibniz-Forschungsinstitut für Molekulare Pharmakologie)

  • Johanna Funk

    (Max Planck Institute of Molecular Physiology)

  • Benjamin Bardiaux

    (Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit)

  • Jonas Protze

    (Leibniz-Forschungsinstitut für Molekulare Pharmakologie)

  • Peter Bieling

    (Max Planck Institute of Molecular Physiology)

  • Hartmut Oschkinat

    (Leibniz-Forschungsinstitut für Molekulare Pharmakologie)

  • Stefan Raunser

    (Max Planck Institute of Molecular Physiology)

Abstract

Tc toxins deliver toxic enzymes into host cells by a unique injection mechanism. One of these enzymes is the actin ADP-ribosyltransferase TccC3, whose activity leads to the clustering of the cellular cytoskeleton and ultimately cell death. Here, we show in atomic detail how TccC3 modifies actin. We find that the ADP-ribosyltransferase does not bind to G-actin but interacts with two consecutive actin subunits of F-actin. The binding of TccC3 to F-actin occurs via an induced-fit mechanism that facilitates access of NAD+ to the nucleotide binding pocket. The following nucleophilic substitution reaction results in the transfer of ADP-ribose to threonine-148 of F-actin. We demonstrate that this site-specific modification of F-actin prevents its interaction with depolymerization factors, such as cofilin, which impairs actin network turnover and leads to steady actin polymerization. Our findings reveal in atomic detail a mechanism of action of a bacterial toxin through specific targeting and modification of F-actin.

Suggested Citation

  • Alexander Belyy & Florian Lindemann & Daniel Roderer & Johanna Funk & Benjamin Bardiaux & Jonas Protze & Peter Bieling & Hartmut Oschkinat & Stefan Raunser, 2022. "Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31836-w
    DOI: 10.1038/s41467-022-31836-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31836-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31836-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Belyy & Felipe Merino & Undine Mechold & Stefan Raunser, 2021. "Mechanism of actin-dependent activation of nucleotidyl cyclase toxins from bacterial human pathogens," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Jason N. Busby & Santosh Panjikar & Michael J. Landsberg & Mark R. H. Hurst & J. Shaun Lott, 2013. "The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device," Nature, Nature, vol. 501(7468), pages 547-550, September.
    3. Johanna Funk & Felipe Merino & Matthias Schaks & Klemens Rottner & Stefan Raunser & Peter Bieling, 2021. "A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Daniel Roderer & Evelyn Schubert & Oleg Sitsel & Stefan Raunser, 2019. "Towards the application of Tc toxins as a universal protein translocation system," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Daniel Roderer & Felix Bröcker & Oleg Sitsel & Paulina Kaplonek & Franziska Leidreiter & Peter H. Seeberger & Stefan Raunser, 2020. "Glycan-dependent cell adhesion mechanism of Tc toxins," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Dominic Meusch & Christos Gatsogiannis & Rouslan G. Efremov & Alexander E. Lang & Oliver Hofnagel & Ingrid R. Vetter & Klaus Aktories & Stefan Raunser, 2014. "Mechanism of Tc toxin action revealed in molecular detail," Nature, Nature, vol. 508(7494), pages 61-65, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Belyy & Philipp Heilen & Philine Hagel & Oliver Hofnagel & Stefan Raunser, 2023. "Structure and activation mechanism of the Makes caterpillars floppy 1 toxin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiheng Liu & Xian Xia & Eric Calvo & Z. Hong Zhou, 2023. "Native structure of mosquito salivary protein uncovers domains relevant to pathogen transmission," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Alexander Belyy & Philipp Heilen & Philine Hagel & Oliver Hofnagel & Stefan Raunser, 2023. "Structure and activation mechanism of the Makes caterpillars floppy 1 toxin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Dukas Jurėnas & Leonardo Talachia Rosa & Martial Rey & Julia Chamot-Rooke & Rémi Fronzes & Eric Cascales, 2021. "Mounting, structure and autocleavage of a type VI secretion-associated Rhs polymorphic toxin," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Micaela Boiero Sanders & Wout Oosterheert & Oliver Hofnagel & Peter Bieling & Stefan Raunser, 2024. "Phalloidin and DNase I-bound F-actin pointed end structures reveal principles of filament stabilization and disassembly," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Ewa Sitarska & Silvia Dias Almeida & Marianne Sandvold Beckwith & Julian Stopp & Jakub Czuchnowski & Marc Siggel & Rita Roessner & Aline Tschanz & Christer Ejsing & Yannick Schwab & Jan Kosinski & Mic, 2023. "Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Tommi Kotila & Hugo Wioland & Muniyandi Selvaraj & Konstantin Kogan & Lina Antenucci & Antoine Jégou & Juha T. Huiskonen & Guillaume Romet-Lemonne & Pekka Lappalainen, 2022. "Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Amaia González-Magaña & Igor Tascón & Jon Altuna-Alvarez & María Queralt-Martín & Jake Colautti & Carmen Velázquez & Maialen Zabala & Jessica Rojas-Palomino & Marité Cárdenas & Antonio Alcaraz & John , 2023. "Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Heidi Ulrichs & Ignas Gaska & Shashank Shekhar, 2023. "Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31836-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.