IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43336-6.html
   My bibliography  Save this article

Activation of ILC2s through constitutive IFNγ signaling reduction leads to spontaneous pulmonary fibrosis

Author

Listed:
  • Natsuko Otaki

    (RIKEN Center for Integrative Medical Sciences (IMS)
    Keio University School of Medicine)

  • Yasutaka Motomura

    (RIKEN Center for Integrative Medical Sciences (IMS)
    Osaka University
    Osaka University)

  • Tommy Terooatea

    (RIKEN Center for Integrative Medical Sciences (IMS))

  • S. Thomas Kelly

    (RIKEN Center for Integrative Medical Sciences (IMS))

  • Miho Mochizuki

    (RIKEN Center for Integrative Medical Sciences (IMS))

  • Natsuki Takeno

    (RIKEN Center for Integrative Medical Sciences (IMS))

  • Shigeo Koyasu

    (Keio University School of Medicine
    RIKEN Center for Integrative Medical Sciences (IMS))

  • Miu Tamamitsu

    (The University of Tokyo)

  • Fuminori Sugihara

    (Osaka University)

  • Junichi Kikuta

    (Osaka University)

  • Hideya Kitamura

    (Kanagawa Cardiovascular and Respiratory Center)

  • Yoshiki Shiraishi

    (Tokai University School of Medicine)

  • Jun Miyanohara

    (Discovery Accelerator, Astellas Pharma Inc.)

  • Yuji Nagano

    (Discovery Accelerator, Astellas Pharma Inc.)

  • Yuji Saita

    (Discovery Accelerator, Astellas Pharma Inc.)

  • Takashi Ogura

    (Kanagawa Cardiovascular and Respiratory Center)

  • Koichiro Asano

    (Tokai University School of Medicine)

  • Aki Minoda

    (RIKEN Center for Integrative Medical Sciences (IMS)
    Radboud University)

  • Kazuyo Moro

    (RIKEN Center for Integrative Medical Sciences (IMS)
    Osaka University
    Osaka University
    Osaka University)

Abstract

Pulmonary fibrosis (PF), a condition characterized by inflammation and collagen deposition in the alveolar interstitium, causes dyspnea and fatal outcomes. Although the bleomycin-induced PF mouse model has improved our understanding of exogenous factor-induced fibrosis, the mechanism governing endogenous factor-induced fibrosis remains unknown. Here, we find that Ifngr1-/-Rag2-/- mice, which lack the critical suppression factor for group 2 innate lymphoid cells (ILC2), develop PF spontaneously. The onset phase of fibrosis includes ILC2 subpopulations with a high Il1rl1 (IL-33 receptor) expression, and fibrosis does not develop in ILC-deficient or IL-33-deficient mice. Although ILC2s are normally localized near bronchioles and blood vessels, ILC2s are increased in fibrotic areas along with IL-33 positive fibroblasts during fibrosis. Co-culture analysis shows that activated-ILC2s directly induce collagen production from fibroblasts. Furthermore, increased IL1RL1 and decreased IFNGR1 expressions are confirmed in ILC2s from individuals with idiopathic PF, highlighting the applicability of Ifngr1-/-Rag2-/- mice as a mouse model for fibrosis research.

Suggested Citation

  • Natsuko Otaki & Yasutaka Motomura & Tommy Terooatea & S. Thomas Kelly & Miho Mochizuki & Natsuki Takeno & Shigeo Koyasu & Miu Tamamitsu & Fuminori Sugihara & Junichi Kikuta & Hideya Kitamura & Yoshiki, 2023. "Activation of ILC2s through constitutive IFNγ signaling reduction leads to spontaneous pulmonary fibrosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43336-6
    DOI: 10.1038/s41467-023-43336-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43336-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43336-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroki Kabata & Kazuyo Moro & Koichi Fukunaga & Yusuke Suzuki & Jun Miyata & Katsunori Masaki & Tomoko Betsuyaku & Shigeo Koyasu & Koichiro Asano, 2013. "Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
    2. Michael Lawrence & Wolfgang Huber & Hervé Pagès & Patrick Aboyoun & Marc Carlson & Robert Gentleman & Martin T Morgan & Vincent J Carey, 2013. "Software for Computing and Annotating Genomic Ranges," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poonam Dhillon & Kelly Ann Mulholland & Hailong Hu & Jihwan Park & Xin Sheng & Amin Abedini & Hongbo Liu & Allison Vassalotti & Junnan Wu & Katalin Susztak, 2023. "Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Gaylor Boulay & Liliane C. Broye & Rui Dong & Sowmya Iyer & Rajendran Sanalkumar & Yu-Hang Xing & Rémi Buisson & Shruthi Rengarajan & Beverly Naigles & Benoît Duc & Angela Volorio & Mary E. Awad & Raf, 2024. "EWS-WT1 fusion isoforms establish oncogenic programs and therapeutic vulnerabilities in desmoplastic small round cell tumors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Yuying Huang & Lin Zhu & Shipeng Cheng & Ranran Dai & Chunrong Huang & Yanyan Song & Bo Peng & Xuezhen Li & Jing Wen & Yi Gong & Yunqian Hu & Ling Qian & Linyun Zhu & Fengying Zhang & Li Yu & Chunyan , 2023. "Solar ultraviolet B radiation promotes α-MSH secretion to attenuate the function of ILC2s via the pituitary–lung axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Hailyn V. Nielsen & Letitia Yang & James L. Mueller & Alexander J. Ritter & Ryosuke Hiwa & Irina Proekt & Elze Rackaityte & Dominik Aylard & Mansi Gupta & Christopher D. Scharer & Mark S. Anderson & B, 2025. "Nr4a1 and Nr4a3 redundantly control clonal deletion and contribute to an anergy-like transcriptome in auto-reactive thymocytes to impose tolerance in mice," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    7. Tiago C. Luis & Nikolaos Barkas & Joana Carrelha & Alice Giustacchini & Stefania Mazzi & Ruggiero Norfo & Bishan Wu & Affaf Aliouat & Jose A. Guerrero & Alba Rodriguez-Meira & Tiphaine Bouriez-Jones &, 2023. "Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Michael R. Kelly & Kamila Wisniewska & Matthew J. Regner & Michael W. Lewis & Andrea A. Perreault & Eric S. Davis & Douglas H. Phanstiel & Joel S. Parker & Hector L. Franco, 2022. "A multi-omic dissection of super-enhancer driven oncogenic gene expression programs in ovarian cancer," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    9. Ioanna Tzani & Marina Castro-Rivadeneyra & Paul Kelly & Lisa Strasser & Lin Zhang & Martin Clynes & Barry L. Karger & Niall Barron & Jonathan Bones & Colin Clarke, 2024. "Detection of host cell microprotein impurities in antibody drug products," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Zachary A. Hing & Janek S. Walker & Ethan C. Whipp & Lindsey Brinton & Matthew Cannon & Pu Zhang & Steven Sher & Casey B. Cempre & Fiona Brown & Porsha L. Smith & Claudio Agostinelli & Stefano A. Pile, 2023. "Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter’s transformation," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Brian M. Schilder & Alan E. Murphy & Nathan G. Skene, 2024. "rworkflows: automating reproducible practices for the R community," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. F. Nadalin & M. J. Marzi & M. Pirra Piscazzi & P. Fuentes-Bravo & S. Procaccia & M. Climent & P. Bonetti & C. Rubolino & B. Giuliani & I. Papatheodorou & J. C. Marioni & F. Nicassio, 2024. "Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    13. Jose V Die & Ransom L Baldwin & Lisa J Rowland & Robert Li & Sunghee Oh & Congjun Li & Erin E Connor & Maria-Jose Ranilla, 2017. "Selection of internal reference genes for normalization of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis in the rumen epithelium," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    14. Maja Olecka & Alena Bömmel & Lena Best & Madlen Haase & Silke Foerste & Konstantin Riege & Thomas Dost & Stefano Flor & Otto W. Witte & Sören Franzenburg & Marco Groth & Björn Eyss & Christoph Kaleta , 2024. "Nonlinear DNA methylation trajectories in aging male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Eleni Kabrani & Ali Rahjouei & Maria Berruezo-Llacuna & Svenja Ebeling & Tannishtha Saha & Robert Altwasser & Veronica Delgado-Benito & Rushad Pavri & Michela Virgilio, 2025. "RIF1 integrates DNA repair and transcriptional requirements during the establishment of humoral immune responses," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    16. Claire Marchal & Nivedita Singh & Zachary Batz & Jayshree Advani & Catherine Jaeger & Ximena Corso-Díaz & Anand Swaroop, 2022. "High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Daniela Klaproth-Andrade & Johannes Hingerl & Yanik Bruns & Nicholas H. Smith & Jakob Träuble & Mathias Wilhelm & Julien Gagneur, 2024. "Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Ihab Ansari & Llorenç Solé-Boldo & Meshi Ridnik & Julian Gutekunst & Oliver Gilliam & Maria Korshko & Timur Liwinski & Birgit Jickeli & Noa Weinberg-Corem & Michal Shoshkes-Carmel & Eli Pikarsky & Era, 2023. "TET2 and TET3 loss disrupts small intestine differentiation and homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Edoardo Bertolini & Brian R. Rice & Max Braud & Jiani Yang & Sarah Hake & Josh Strable & Alexander E. Lipka & Andrea L. Eveland, 2025. "Regulatory variation controlling architectural pleiotropy in maize," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    20. Maritere Uriostegui-Arcos & Steven T. Mick & Zhuo Shi & Rufuto Rahman & Ana Fiszbein, 2023. "Splicing activates transcription from weak promoters upstream of alternative exons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43336-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.