IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43256-5.html
   My bibliography  Save this article

Dimension-agnostic and granularity-based spatially variable gene identification using BSP

Author

Listed:
  • Juexin Wang

    (Computing, and Engineering, Indiana University Indianapolis
    University of Missouri)

  • Jinpu Li

    (University of Missouri
    University of Missouri)

  • Skyler T. Kramer

    (University of Missouri
    University of Missouri)

  • Li Su

    (University of Missouri
    University of Missouri)

  • Yuzhou Chang

    (The Ohio State University
    The James Comprehensive Cancer Center, The Ohio State University)

  • Chunhui Xu

    (University of Missouri
    University of Missouri)

  • Michael T. Eadon

    (Indiana University)

  • Krzysztof Kiryluk

    (Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center)

  • Qin Ma

    (The Ohio State University
    The James Comprehensive Cancer Center, The Ohio State University)

  • Dong Xu

    (University of Missouri
    University of Missouri
    University of Missouri)

Abstract

Identifying spatially variable genes (SVGs) is critical in linking molecular cell functions with tissue phenotypes. Spatially resolved transcriptomics captures cellular-level gene expression with corresponding spatial coordinates in two or three dimensions and can be used to infer SVGs effectively. However, current computational methods may not achieve reliable results and often cannot handle three-dimensional spatial transcriptomic data. Here we introduce BSP (big-small patch), a non-parametric model by comparing gene expression pattens at two spatial granularities to identify SVGs from two or three-dimensional spatial transcriptomics data in a fast and robust manner. This method has been extensively tested in simulations, demonstrating superior accuracy, robustness, and high efficiency. BSP is further validated by substantiated biological discoveries in cancer, neural science, rheumatoid arthritis, and kidney studies with various types of spatial transcriptomics technologies.

Suggested Citation

  • Juexin Wang & Jinpu Li & Skyler T. Kramer & Li Su & Yuzhou Chang & Chunhui Xu & Michael T. Eadon & Krzysztof Kiryluk & Qin Ma & Dong Xu, 2023. "Dimension-agnostic and granularity-based spatially variable gene identification using BSP," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43256-5
    DOI: 10.1038/s41467-023-43256-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43256-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43256-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juexin Wang & Anjun Ma & Yuzhou Chang & Jianting Gong & Yuexu Jiang & Ren Qi & Cankun Wang & Hongjun Fu & Qin Ma & Dong Xu, 2021. "scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Ed S. Lein & Michael J. Hawrylycz & Nancy Ao & Mikael Ayres & Amy Bensinger & Amy Bernard & Andrew F. Boe & Mark S. Boguski & Kevin S. Brockway & Emi J. Byrnes & Lin Chen & Li Chen & Tsuey-Ming Chen &, 2007. "Genome-wide atlas of gene expression in the adult mouse brain," Nature, Nature, vol. 445(7124), pages 168-176, January.
    3. Margarida Cardoso-Moreira & Jean Halbert & Delphine Valloton & Britta Velten & Chunyan Chen & Yi Shao & Angélica Liechti & Kelly Ascenção & Coralie Rummel & Svetlana Ovchinnikova & Pavel V. Mazin & Io, 2019. "Gene expression across mammalian organ development," Nature, Nature, vol. 571(7766), pages 505-509, July.
    4. Anjali Rao & Dalia Barkley & Gustavo S. França & Itai Yanai, 2021. "Exploring tissue architecture using spatial transcriptomics," Nature, Nature, vol. 596(7871), pages 211-220, August.
    5. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    6. Lukas M. Weber & Arkajyoti Saha & Abhirup Datta & Kasper D. Hansen & Stephanie C. Hicks, 2023. "nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    4. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Benjamin L. Walker & Qing Nie, 2023. "NeST: nested hierarchical structure identification in spatial transcriptomic data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Xiaomeng Wan & Jiashun Xiao & Sindy Sing Ting Tam & Mingxuan Cai & Ryohichi Sugimura & Yang Wang & Xiang Wan & Zhixiang Lin & Angela Ruohao Wu & Can Yang, 2023. "Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    11. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Zhiyuan Yuan, 2024. "MENDER: fast and scalable tissue structure identification in spatial omics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Shijia Zhu & Naoto Kubota & Shidan Wang & Tao Wang & Guanghua Xiao & Yujin Hoshida, 2024. "STIE: Single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Xinyi Zhang & Xiao Wang & G. V. Shivashankar & Caroline Uhler, 2022. "Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Kian Kalhor & Chien-Ju Chen & Ho Suk Lee & Matthew Cai & Mahsa Nafisi & Richard Que & Carter R. Palmer & Yixu Yuan & Yida Zhang & Xuwen Li & Jinghui Song & Amanda Knoten & Blue B. Lake & Joseph P. Gau, 2024. "Mapping human tissues with highly multiplexed RNA in situ hybridization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Yahui Long & Kok Siong Ang & Mengwei Li & Kian Long Kelvin Chong & Raman Sethi & Chengwei Zhong & Hang Xu & Zhiwei Ong & Karishma Sachaphibulkij & Ao Chen & Li Zeng & Huazhu Fu & Min Wu & Lina Hsiu Ki, 2023. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Brendan F. Miller & Feiyang Huang & Lyla Atta & Arpan Sahoo & Jean Fan, 2022. "Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Yingfeng Tao & Xiaoliu Zhou & Leqiang Sun & Da Lin & Huaiyuan Cai & Xi Chen & Wei Zhou & Bing Yang & Zhe Hu & Jing Yu & Jing Zhang & Xiaoqing Yang & Fang Yang & Bang Shen & Wenbao Qi & Zhenfang Fu & J, 2023. "Highly efficient and robust π-FISH rainbow for multiplexed in situ detection of diverse biomolecules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Kosuke Tomimatsu & Takeru Fujii & Ryoma Bise & Kazufumi Hosoda & Yosuke Taniguchi & Hiroshi Ochiai & Hiroaki Ohishi & Kanta Ando & Ryoma Minami & Kaori Tanaka & Taro Tachibana & Seiichi Mori & Akihito, 2024. "Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43256-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.