IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46437-y.html
   My bibliography  Save this article

Mapping human tissues with highly multiplexed RNA in situ hybridization

Author

Listed:
  • Kian Kalhor

    (University of California San Diego)

  • Chien-Ju Chen

    (University of California San Diego
    University of California San Diego)

  • Ho Suk Lee

    (University of California San Diego
    University of California San Diego)

  • Matthew Cai

    (University of California San Diego)

  • Mahsa Nafisi

    (University of California San Diego)

  • Richard Que

    (University of California San Diego)

  • Carter R. Palmer

    (Sanford Burnham Prebys Medical Discovery Institute
    University of California San Diego)

  • Yixu Yuan

    (University of California San Diego)

  • Yida Zhang

    (Harvard Medical School)

  • Xuwen Li

    (Altos Labs)

  • Jinghui Song

    (University of California San Diego)

  • Amanda Knoten

    (Washington University School of Medicine)

  • Blue B. Lake

    (University of California San Diego
    Altos Labs)

  • Joseph P. Gaut

    (Washington University School of Medicine)

  • C. Dirk Keene

    (University of Washington School of Medicine)

  • Ed Lein

    (Allen Institute for Brain Science)

  • Peter V. Kharchenko

    (Harvard Medical School
    Altos Labs)

  • Jerold Chun

    (Sanford Burnham Prebys Medical Discovery Institute)

  • Sanjay Jain

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Jian-Bing Fan

    (Illumina)

  • Kun Zhang

    (University of California San Diego
    Altos Labs)

Abstract

In situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. There has been a surge of multiplexed RNA in situ mapping techniques but their application to human tissues has been limited due to their large size, general lower tissue quality and high autofluorescence. Here we report DART-FISH, a padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections. We introduce an omni-cell type cytoplasmic stain that substantially improves the segmentation of cell bodies. Our enzyme-free isothermal decoding procedure allows us to image 121 genes in large sections from the human neocortex in 20 healthy and pathological cell states, and identified diseased niches enriched in transcriptionally altered epithelial cells and myofibroblasts.

Suggested Citation

  • Kian Kalhor & Chien-Ju Chen & Ho Suk Lee & Matthew Cai & Mahsa Nafisi & Richard Que & Carter R. Palmer & Yixu Yuan & Yida Zhang & Xuwen Li & Jinghui Song & Amanda Knoten & Blue B. Lake & Joseph P. Gau, 2024. "Mapping human tissues with highly multiplexed RNA in situ hybridization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46437-y
    DOI: 10.1038/s41467-024-46437-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46437-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46437-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Blue B. Lake & Song Chen & Masato Hoshi & Nongluk Plongthongkum & Diane Salamon & Amanda Knoten & Anitha Vijayan & Ramakrishna Venkatesh & Eric H. Kim & Derek Gao & Joseph Gaut & Kun Zhang & Sanjay Ja, 2019. "A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Trygve E. Bakken & Nikolas L. Jorstad & Qiwen Hu & Blue B. Lake & Wei Tian & Brian E. Kalmbach & Megan Crow & Rebecca D. Hodge & Fenna M. Krienen & Staci A. Sorensen & Jeroen Eggermont & Zizhen Yao & , 2021. "Comparative cellular analysis of motor cortex in human, marmoset and mouse," Nature, Nature, vol. 598(7879), pages 111-119, October.
    3. Blue B. Lake & Rajasree Menon & Seth Winfree & Qiwen Hu & Ricardo Melo Ferreira & Kian Kalhor & Daria Barwinska & Edgar A. Otto & Michael Ferkowicz & Dinh Diep & Nongluk Plongthongkum & Amanda Knoten , 2023. "An atlas of healthy and injured cell states and niches in the human kidney," Nature, Nature, vol. 619(7970), pages 585-594, July.
    4. Anjali Rao & Dalia Barkley & Gustavo S. França & Itai Yanai, 2021. "Exploring tissue architecture using spatial transcriptomics," Nature, Nature, vol. 596(7871), pages 211-220, August.
    5. Meng Zhang & Stephen W. Eichhorn & Brian Zingg & Zizhen Yao & Kaelan Cotter & Hongkui Zeng & Hongwei Dong & Xiaowei Zhuang, 2021. "Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH," Nature, Nature, vol. 598(7879), pages 137-143, October.
    6. Zizhen Yao & Hanqing Liu & Fangming Xie & Stephan Fischer & Ricky S. Adkins & Andrew I. Aldridge & Seth A. Ament & Anna Bartlett & M. Margarita Behrens & Koen Berge & Darren Bertagnolli & Hector Roux , 2021. "A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex," Nature, Nature, vol. 598(7879), pages 103-110, October.
    7. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Zhiyuan Yuan, 2024. "MENDER: fast and scalable tissue structure identification in spatial omics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    13. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    16. Jongsu Choi & Jin Li & Salma Ferdous & Qingnan Liang & Jeffrey R. Moffitt & Rui Chen, 2023. "Spatial organization of the mouse retina at single cell resolution by MERFISH," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Dohui Kim & Hyeonji Lim & Jaeseung Youn & Tae-Eun Park & Dong Sung Kim, 2024. "Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Hao Xu & Shuyan Wang & Minghao Fang & Songwen Luo & Chunpeng Chen & Siyuan Wan & Rirui Wang & Meifang Tang & Tian Xue & Bin Li & Jun Lin & Kun Qu, 2023. "SPACEL: deep learning-based characterization of spatial transcriptome architectures," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Ankit Agrawal & Stefan Thomann & Sukanya Basu & Dominic Grün, 2024. "NiCo identifies extrinsic drivers of cell state modulation by niche covariation analysis," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    20. Wei Zhao & Kevin G. Johnston & Honglei Ren & Xiangmin Xu & Qing Nie, 2023. "Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46437-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.