IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22197-x.html
   My bibliography  Save this article

scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses

Author

Listed:
  • Juexin Wang

    (University of Missouri)

  • Anjun Ma

    (The Ohio State University)

  • Yuzhou Chang

    (The Ohio State University)

  • Jianting Gong

    (University of Missouri)

  • Yuexu Jiang

    (University of Missouri)

  • Ren Qi

    (The Ohio State University)

  • Cankun Wang

    (The Ohio State University)

  • Hongjun Fu

    (The Ohio State University)

  • Qin Ma

    (The Ohio State University)

  • Dong Xu

    (University of Missouri)

Abstract

Single-cell RNA-sequencing (scRNA-Seq) is widely used to reveal the heterogeneity and dynamics of tissues, organisms, and complex diseases, but its analyses still suffer from multiple grand challenges, including the sequencing sparsity and complex differential patterns in gene expression. We introduce the scGNN (single-cell graph neural network) to provide a hypothesis-free deep learning framework for scRNA-Seq analyses. This framework formulates and aggregates cell–cell relationships with graph neural networks and models heterogeneous gene expression patterns using a left-truncated mixture Gaussian model. scGNN integrates three iterative multi-modal autoencoders and outperforms existing tools for gene imputation and cell clustering on four benchmark scRNA-Seq datasets. In an Alzheimer’s disease study with 13,214 single nuclei from postmortem brain tissues, scGNN successfully illustrated disease-related neural development and the differential mechanism. scGNN provides an effective representation of gene expression and cell–cell relationships. It is also a powerful framework that can be applied to general scRNA-Seq analyses.

Suggested Citation

  • Juexin Wang & Anjun Ma & Yuzhou Chang & Jianting Gong & Yuexu Jiang & Ren Qi & Cankun Wang & Hongjun Fu & Qin Ma & Dong Xu, 2021. "scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22197-x
    DOI: 10.1038/s41467-021-22197-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22197-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22197-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunpei Xu & Shaokai Wang & Qilong Feng & Jiazhi Xia & Yaohang Li & Hong-Dong Li & Jianxin Wang, 2024. "scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Anjun Ma & Xiaoying Wang & Jingxian Li & Cankun Wang & Tong Xiao & Yuntao Liu & Hao Cheng & Juexin Wang & Yang Li & Yuzhou Chang & Jinpu Li & Duolin Wang & Yuexu Jiang & Li Su & Gang Xin & Shaopeng Gu, 2023. "Single-cell biological network inference using a heterogeneous graph transformer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Junyi Chen & Xiaoying Wang & Anjun Ma & Qi-En Wang & Bingqiang Liu & Lang Li & Dong Xu & Qin Ma, 2022. "Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Chunman Zuo & Yijian Zhang & Chen Cao & Jinwang Feng & Mingqi Jiao & Luonan Chen, 2022. "Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Jingxuan Zhu & Juexin Wang & Weiwei Han & Dong Xu, 2022. "Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Juexin Wang & Jinpu Li & Skyler T. Kramer & Li Su & Yuzhou Chang & Chunhui Xu & Michael T. Eadon & Krzysztof Kiryluk & Qin Ma & Dong Xu, 2023. "Dimension-agnostic and granularity-based spatially variable gene identification using BSP," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Zhenchao Tang & Guanxing Chen & Shouzhi Chen & Jianhua Yao & Linlin You & Calvin Yu-Chian Chen, 2024. "Modal-nexus auto-encoder for multi-modality cellular data integration and imputation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Xiaoying Wang & Maoteng Duan & Jingxian Li & Anjun Ma & Gang Xin & Dong Xu & Zihai Li & Bingqiang Liu & Qin Ma, 2024. "MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Zhuohan Yu & Yanchi Su & Yifu Lu & Yuning Yang & Fuzhou Wang & Shixiong Zhang & Yi Chang & Ka-Chun Wong & Xiangtao Li, 2023. "Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22197-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.