IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43159-5.html
   My bibliography  Save this article

Leveraging information between multiple population groups and traits improves fine-mapping resolution

Author

Listed:
  • Feng Zhou

    (University of Cambridge)

  • Opeyemi Soremekun

    (MRC/UVRI and LSHTM)

  • Tinashe Chikowore

    (University of the Witwatersrand
    University of the Witwatersrand
    Brigham and Women’s Hospital
    Harvard Medical School)

  • Segun Fatumo

    (MRC/UVRI and LSHTM
    London School of Hygiene and Tropical Medicine)

  • Inês Barroso

    (University of Exeter Medical School)

  • Andrew P. Morris

    (University of Manchester)

  • Jennifer L. Asimit

    (University of Cambridge)

Abstract

Statistical fine-mapping helps to pinpoint likely causal variants underlying genetic association signals. Its resolution can be improved by (i) leveraging information between traits; and (ii) exploiting differences in linkage disequilibrium structure between diverse population groups. Using association summary statistics, MGflashfm jointly fine-maps signals from multiple traits and population groups; MGfm uses an analogous framework to analyse each trait separately. We also provide a practical approach to fine-mapping with out-of-sample reference panels. In simulation studies we show that MGflashfm and MGfm are well-calibrated and that the mean proportion of causal variants with PP > 0.80 is above 0.75 (MGflashfm) and 0.70 (MGfm). In our analysis of four lipids traits across five population groups, MGflashfm gives a median 99% credible set reduction of 10.5% over MGfm. MGflashfm and MGfm only require summary level data, making them very useful fine-mapping tools in consortia efforts where individual-level data cannot be shared.

Suggested Citation

  • Feng Zhou & Opeyemi Soremekun & Tinashe Chikowore & Segun Fatumo & Inês Barroso & Andrew P. Morris & Jennifer L. Asimit, 2023. "Leveraging information between multiple population groups and traits improves fine-mapping resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43159-5
    DOI: 10.1038/s41467-023-43159-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43159-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43159-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melina Claussnitzer & Judy H. Cho & Rory Collins & Nancy J. Cox & Emmanouil T. Dermitzakis & Matthew E. Hurles & Sekar Kathiresan & Eimear E. Kenny & Cecilia M. Lindgren & Daniel G. MacArthur & Kathry, 2020. "A brief history of human disease genetics," Nature, Nature, vol. 577(7789), pages 179-189, January.
    2. Sarah E. Graham & Shoa L. Clarke & Kuan-Han H. Wu & Stavroula Kanoni & Greg J. M. Zajac & Shweta Ramdas & Ida Surakka & Ioanna Ntalla & Sailaja Vedantam & Thomas W. Winkler & Adam E. Locke & Eirini Ma, 2021. "The power of genetic diversity in genome-wide association studies of lipids," Nature, Nature, vol. 600(7890), pages 675-679, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Fang Liang & Yu Zhang & Lin Li & Yexin Yang & Ji-Feng Fei & Yanmei Liu & Wei Qin, 2022. "SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Michael G. Levin & Noah L. Tsao & Pankhuri Singhal & Chang Liu & Ha My T. Vy & Ishan Paranjpe & Joshua D. Backman & Tiffany R. Bellomo & William P. Bone & Kiran J. Biddinger & Qin Hui & Ozan Dikilitas, 2022. "Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Nicole Deflaux & Margaret Sunitha Selvaraj & Henry Robert Condon & Kelsey Mayo & Sara Haidermota & Melissa A. Basford & Chris Lunt & Anthony A. Philippakis & Dan M. Roden & Joshua C. Denny & Anjene Mu, 2023. "Demonstrating paths for unlocking the value of cloud genomics through cross cohort analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xiaofeng Zhu & Yihe Yang & Noah Lorincz-Comi & Gen Li & Amy R. Bentley & Paul S. de Vries & Michael Brown & Alanna C. Morrison & Charles N. Rotimi & W. James Gauderman & Dabeeru C. Rao & Hugues Aschar, 2024. "An approach to identify gene-environment interactions and reveal new biological insight in complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Injeong Shim & Hiroyuki Kuwahara & NingNing Chen & Mais O. Hashem & Lama AlAbdi & Mohamed Abouelhoda & Hong-Hee Won & Pradeep Natarajan & Patrick T. Ellinor & Amit V. Khera & Xin Gao & Fowzan S. Alkur, 2023. "Clinical utility of polygenic scores for cardiometabolic disease in Arabs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Danielle Rasooly & Gina M. Peloso & Alexandre C. Pereira & Hesam Dashti & Claudia Giambartolomei & Eleanor Wheeler & Nay Aung & Brian R. Ferolito & Maik Pietzner & Eric H. Farber-Eger & Quinn Stanton , 2023. "Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Mingxuan Cai & Zhiwei Wang & Jiashun Xiao & Xianghong Hu & Gang Chen & Can Yang, 2023. "XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Linda Ottensmann & Rubina Tabassum & Sanni E. Ruotsalainen & Mathias J. Gerl & Christian Klose & Elisabeth Widén & Kai Simons & Samuli Ripatti & Matti Pirinen, 2023. "Genome-wide association analysis of plasma lipidome identifies 495 genetic associations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Tzu-Ting Chen & Jaeyoung Kim & Max Lam & Yi-Fang Chuang & Yen-Ling Chiu & Shu-Chin Lin & Sang-Hyuk Jung & Beomsu Kim & Soyeon Kim & Chamlee Cho & Injeong Shim & Sanghyeon Park & Yeeun Ahn & Aysu Okbay, 2024. "Shared genetic architectures of educational attainment in East Asian and European populations," Nature Human Behaviour, Nature, vol. 8(3), pages 562-575, March.
    11. Sebastian Hendrix & Jenina Kingma & Roelof Ottenhoff & Masoud Valiloo & Monika Svecla & Lobke F. Zijlstra & Vinay Sachdev & Kristina Kovac & Johannes H. M. Levels & Aldo Jongejan & Jan F. Boer & Folke, 2023. "Hepatic SREBP signaling requires SPRING to govern systemic lipid metabolism in mice and humans," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023. "eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    13. Ananyo Choudhury & Jean-Tristan Brandenburg & Tinashe Chikowore & Dhriti Sengupta & Palwende Romuald Boua & Nigel J. Crowther & Godfred Agongo & Gershim Asiki & F. Xavier Gómez-Olivé & Isaac Kisiangan, 2022. "Meta-analysis of sub-Saharan African studies provides insights into genetic architecture of lipid traits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Atlas Khan & Ning Shang & Jordan G. Nestor & Chunhua Weng & George Hripcsak & Peter C. Harris & Ali G. Gharavi & Krzysztof Kiryluk, 2023. "Polygenic risk alters the penetrance of monogenic kidney disease," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Jingning Zhang & Jianan Zhan & Jin Jin & Cheng Ma & Ruzhang Zhao & Jared O’Connell & Yunxuan Jiang & Bertram L. Koelsch & Haoyu Zhang & Nilanjan Chatterjee, 2024. "An ensemble penalized regression method for multi-ancestry polygenic risk prediction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Abram Bunya Kamiza & Sounkou M. Touré & Feng Zhou & Opeyemi Soremekun & Cheickna Cissé & Mamadou Wélé & Aboubacrine M. Touré & Oyekanmi Nashiru & Manuel Corpas & Moffat Nyirenda & Amelia Crampin & Jef, 2023. "Multi-trait discovery and fine-mapping of lipid loci in 125,000 individuals of African ancestry," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Gerard Llimos & Vincent Gardeux & Ute Koch & Judith F. Kribelbauer & Antonina Hafner & Daniel Alpern & Joern Pezoldt & Maria Litovchenko & Julie Russeil & Riccardo Dainese & Riccardo Moia & Abdurraouf, 2022. "A leukemia-protective germline variant mediates chromatin module formation via transcription factor nucleation," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    19. Qin Qin Huang & Neneh Sallah & Diana Dunca & Bhavi Trivedi & Karen A. Hunt & Sam Hodgson & Samuel A. Lambert & Elena Arciero & John Wright & Chris Griffiths & Richard C. Trembath & Harry Hemingway & M, 2022. "Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Matthew T. Patrick & Qinmengge Li & Rachael Wasikowski & Nehal Mehta & Johann E. Gudjonsson & James T. Elder & Xiang Zhou & Lam C. Tsoi, 2022. "Shared genetic risk factors and causal association between psoriasis and coronary artery disease," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43159-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.