IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42782-6.html
   My bibliography  Save this article

Antiferromagnetic topological insulator with selectively gapped Dirac cones

Author

Listed:
  • A. Honma

    (Tohoku University)

  • D. Takane

    (Tohoku University)

  • S. Souma

    (Tohoku University
    Tohoku University)

  • K. Yamauchi

    (Osaka University)

  • Y. Wang

    (Institute of Physics II, University of Cologne)

  • K. Nakayama

    (Tohoku University
    Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST))

  • K. Sugawara

    (Tohoku University
    Tohoku University)

  • M. Kitamura

    (Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)
    National Institutes for Quantum Science and Technology (QST))

  • K. Horiba

    (National Institutes for Quantum Science and Technology (QST))

  • H. Kumigashira

    (Tohoku University)

  • K. Tanaka

    (UVSOR Synchrotron Facility, Institute for Molecular Science)

  • T. K. Kim

    (Diamond Light Source, Harwell Science and Innovation Campus)

  • C. Cacho

    (Diamond Light Source, Harwell Science and Innovation Campus)

  • T. Oguchi

    (Osaka University)

  • T. Takahashi

    (Tohoku University
    Tohoku University)

  • Yoichi Ando

    (Institute of Physics II, University of Cologne)

  • T. Sato

    (Tohoku University
    Tohoku University
    Tohoku University
    Tohoku University)

Abstract

Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in the AF phase, whereas this has been challenging because of the lack of a suitable materials platform. Here we report the experimental realization of the AF topological-insulator phase in NdBi. By using micro-focused angle-resolved photoemission spectroscopy, we discovered contrasting surface electronic states for two types of AF domains; the surface having the out-of-plane component in the AF-ordering vector displays Dirac-cone states with a gigantic energy gap, whereas the surface parallel to the AF-ordering vector hosts gapless Dirac states despite the time-reversal-symmetry breaking. The present results establish an essential role of combined symmetry to protect massless Dirac fermions under the presence of AF order and widen opportunities to realize exotic phenomena utilizing AF topological materials.

Suggested Citation

  • A. Honma & D. Takane & S. Souma & K. Yamauchi & Y. Wang & K. Nakayama & K. Sugawara & M. Kitamura & K. Horiba & H. Kumigashira & K. Tanaka & T. K. Kim & C. Cacho & T. Oguchi & T. Takahashi & Yoichi An, 2023. "Antiferromagnetic topological insulator with selectively gapped Dirac cones," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42782-6
    DOI: 10.1038/s41467-023-42782-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42782-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42782-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jayita Nayak & Shu-Chun Wu & Nitesh Kumar & Chandra Shekhar & Sanjay Singh & Jörg Fink & Emile E. D. Rienks & Gerhard H. Fecher & Stuart S. P. Parkin & Binghai Yan & Claudia Felser, 2017. "Multiple Dirac cones at the surface of the topological metal LaBi," Nature Communications, Nature, vol. 8(1), pages 1-5, April.
    2. B. Andrei Bernevig & Claudia Felser & Haim Beidenkopf, 2022. "Progress and prospects in magnetic topological materials," Nature, Nature, vol. 603(7899), pages 41-51, March.
    3. Benjamin Schrunk & Yevhen Kushnirenko & Brinda Kuthanazhi & Junyeong Ahn & Lin-Lin Wang & Evan O’Leary & Kyungchan Lee & Andrew Eaton & Alexander Fedorov & Rui Lou & Vladimir Voroshnin & Oliver J. Cla, 2022. "Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet," Nature, Nature, vol. 603(7902), pages 610-615, March.
    4. Benjamin Schrunk & Yevhen Kushnirenko & Brinda Kuthanazhi & Junyeong Ahn & Lin-Lin Wang & Evan O’Leary & Kyungchan Lee & Andrew Eaton & Alexander Fedorov & Rui Lou & Vladimir Voroshnin & Oliver J. Cla, 2022. "Publisher Correction: Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet," Nature, Nature, vol. 605(7909), pages 5-5, May.
    5. Bo Chen & Fucong Fei & Dongqin Zhang & Bo Zhang & Wanling Liu & Shuai Zhang & Pengdong Wang & Boyuan Wei & Yong Zhang & Zewen Zuo & Jingwen Guo & Qianqian Liu & Zilu Wang & Xuchuan Wu & Junyu Zong & X, 2019. "Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    6. Nicodemos Varnava & Justin H. Wilson & J. H. Pixley & David Vanderbilt, 2021. "Controllable quantum point junction on the surface of an antiferromagnetic topological insulator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Yuanfeng Xu & Luis Elcoro & Zhi-Da Song & Benjamin J. Wieder & M. G. Vergniory & Nicolas Regnault & Yulin Chen & Claudia Felser & B. Andrei Bernevig, 2020. "High-throughput calculations of magnetic topological materials," Nature, Nature, vol. 586(7831), pages 702-707, October.
    8. M. M. Otrokov & I. I. Klimovskikh & H. Bentmann & D. Estyunin & A. Zeugner & Z. S. Aliev & S. Gaß & A. U. B. Wolter & A. V. Koroleva & A. M. Shikin & M. Blanco-Rey & M. Hoffmann & I. P. Rusinov & A. Y, 2019. "Prediction and observation of an antiferromagnetic topological insulator," Nature, Nature, vol. 576(7787), pages 416-422, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ovchinnikov & Jiaqi Cai & Zhong Lin & Zaiyao Fei & Zhaoyu Liu & Yong-Tao Cui & David H. Cobden & Jiun-Haw Chu & Cui-Zu Chang & Di Xiao & Jiaqiang Yan & Xiaodong Xu, 2022. "Topological current divider in a Chern insulator junction," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Erjian Cheng & Limin Yan & Xianbiao Shi & Rui Lou & Alexander Fedorov & Mahdi Behnami & Jian Yuan & Pengtao Yang & Bosen Wang & Jin-Guang Cheng & Yuanji Xu & Yang Xu & Wei Xia & Nikolai Pavlovskii & D, 2024. "Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Haiming Deng & Lukas Zhao & Kyungwha Park & Jiaqiang Yan & Kamil Sobczak & Ayesha Lakra & Entela Buzi & Lia Krusin-Elbaum, 2022. "Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Su Kong Chong & Chao Lei & Seng Huat Lee & Jan Jaroszynski & Zhiqiang Mao & Allan H. MacDonald & Kang L. Wang, 2023. "Anomalous Landau quantization in intrinsic magnetic topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Hari Padmanabhan & Maxwell Poore & Peter K. Kim & Nathan Z. Koocher & Vladimir A. Stoica & Danilo Puggioni & Huaiyu Wang & Xiaozhe Shen & Alexander H. Reid & Mingqiang Gu & Maxwell Wetherington & Seng, 2022. "Interlayer magnetophononic coupling in MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Zengle Huang & Hemian Yi & Daniel Kaplan & Lujin Min & Hengxin Tan & Ying-Ting Chan & Zhiqiang Mao & Binghai Yan & Cui-Zu Chang & Weida Wu, 2024. "Hidden non-collinear spin-order induced topological surface states," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Yaoxin Li & Yongchao Wang & Zichen Lian & Hao Li & Zhiting Gao & Liangcai Xu & Huan Wang & Rui’e Lu & Longfei Li & Yang Feng & Jinjiang Zhu & Liangyang Liu & Yongqian Wang & Bohan Fu & Shuai Yang & Lu, 2024. "Fabrication-induced even-odd discrepancy of magnetotransport in few-layer MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Afrin N. Tamanna & Ayesha Lakra & Xiaxin Ding & Entela Buzi & Kyungwha Park & Kamil Sobczak & Haiming Deng & Gargee Sharma & Sumanta Tewari & Lia Krusin-Elbaum, 2024. "Transport chirality generated by a tunable tilt of Weyl nodes in a van der Waals topological magnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Junyeong Ahn & Su-Yang Xu & Ashvin Vishwanath, 2022. "Theory of optical axion electrodynamics and application to the Kerr effect in topological antiferromagnets," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Han Wu & Lei Chen & Paul Malinowski & Bo Gyu Jang & Qinwen Deng & Kirsty Scott & Jianwei Huang & Jacob P. C. Ruff & Yu He & Xiang Chen & Chaowei Hu & Ziqin Yue & Ji Seop Oh & Xiaokun Teng & Yucheng Gu, 2024. "Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Hang Chi & Yunbo Ou & Tim B. Eldred & Wenpei Gao & Sohee Kwon & Joseph Murray & Michael Dreyer & Robert E. Butera & Alexandre C. Foucher & Haile Ambaye & Jong Keum & Alice T. Greenberg & Yuhang Liu & , 2023. "Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Su Kong Chong & Yang Cheng & Huiyuan Man & Seng Huat Lee & Yu Wang & Bingqian Dai & Masaki Tanabe & Ting-Hsun Yang & Zhiqiang Mao & Kathryn A. Moler & Kang L. Wang, 2024. "Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Shiming Lei & Kevin Allen & Jianwei Huang & Jaime M. Moya & Tsz Chun Wu & Brian Casas & Yichen Zhang & Ji Seop Oh & Makoto Hashimoto & Donghui Lu & Jonathan Denlinger & Chris Jozwiak & Aaron Bostwick , 2023. "Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Francesco Romeo & Antonio Di Bartolomeo, 2023. "The experimental demonstration of a topological current divider," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    16. Fengrui Yao & Volodymyr Multian & Zhe Wang & Nicolas Ubrig & Jérémie Teyssier & Fan Wu & Enrico Giannini & Marco Gibertini & Ignacio Gutiérrez-Lezama & Alberto F. Morpurgo, 2023. "Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Yi-Fan Zhao & Ruoxi Zhang & Jiaqi Cai & Deyi Zhuo & Ling-Jie Zhou & Zi-Jie Yan & Moses H. W. Chan & Xiaodong Xu & Cui-Zu Chang, 2023. "Creation of chiral interface channels for quantized transport in magnetic topological insulator multilayer heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Hui Li & Chengping Zhang & Chengjie Zhou & Chen Ma & Xiao Lei & Zijing Jin & Hongtao He & Baikui Li & Kam Tuen Law & Jiannong Wang, 2024. "Quantum geometry quadrupole-induced third-order nonlinear transport in antiferromagnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Tiantian He & Yuan Meng & Lele Wang & Hongkun Zhong & Nilo Mata-Cervera & Dan Li & Ping Yan & Qiang Liu & Yijie Shen & Qirong Xiao, 2024. "Optical skyrmions from metafibers with subwavelength features," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42782-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.